[1] AGOSTI M, CRIVELLARI F, DI NUNZIO G M.Web log analysis:a review of a decade of studies about information acquisition, inspection and interpretation of user interaction[J].Data Mining and Knowledge Discovery, 2012, 24(3):663-696. [2] HE S L, ZHU J M, HE P J, et al.Experience report:system log analysis for anomaly detection[C]//Proceedings of the 27th International Symposium on Software Reliability Engineering.Washington D.C., USA:IEEE Press, 2016:207-218. [3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90. [4] MIKOLOV T, KARAFIA T M, BURGET L, et al.Recurrentneural network based language model[C]//Proceedings of 2010 Conference of the International Speech Communication Association.Makuhari, Japan:[s.n.], 2010:1045-1048. [5] GOLOVIN D, SOLNIK B, MOITRA S, et al.Google Vizier:a service for black-box optimization[C]//Proceedings of the 23rd ACM SIGKDD International Conference.New York, USA:ACM Press, 2017:1-10. [6] MENG W B, LIU Y, ZHU Y C, et al.LogAnomaly:unsupervised detection of sequential and quantitative anomalies in unstructured logs[EB/OL].[2021-04-10].https://blog.csdn.net/qq_37660745/article/details/108471442. [7] YUAN Y L, SRIKANT ADHATARAO S, LIN M K, et al.ADA:adaptive deep log anomaly detector[C]//Proceedings of IEEE Conference on Computer Communications.Washington D.C., USA:IEEE Press, 2020:2449-2458. [8] DU M, LI F F, ZHENG G N, et al.DeepLog:anomaly detection and diagnosis from system logs through deep learning[C]//Proceedings of 2017 ACM SIGSAC Conference on Computer and Communications Security.New York, USA:ACM Press, 2017:1-10. [9] HASHEMI S, MÄNTYLÄ M.OneLog:towards end-to-end training in software log anomaly detection[EB/OL].[2021-04-10].https://arxiv.org/abs/2104.07324. [10] 梅御东, 陈旭, 孙毓忠, 等.一种基于日志信息和CNN-text的软件系统异常检测方法[J].计算机学报, 2020, 43(2):366-380. MEI Y D, CHEN X, SUN Y Z, et al.A method for software system anomaly detection based on log information and CNN-text[J].Chinese Journal of Computers, 2020, 43(2):366-380.(in Chinese) [11] DUAN S F, ZHAO H.Attention is all You need for Chinese word segmentation[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2020:1-10. [12] HUANG S H, LIU Y, FUNG C, et al.HitAnomaly:hierarchical transformers for anomaly detection in system log[J].IEEE Transactions on Network and Service Management, 2020, 17(4):2064-2076. [13] GUO Y C, WEN Y J, JIANG C W, et al.Detecting log anomalies with multi-head attention(LAMA)[EB/OL].[2021-04-10].https://arxiv.org/abs/2101.02392. [14] NEDELKOSKI S, BOGATINOVSKI J, ACKER A, et al.Self-attentive classification-based anomaly detection in unstructured logs[C]//Proceedings of 2020 IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2020:1196-1201. [15] MIKOLOV T, SUTSKEVER I, CHEN K, et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th Advances in Neural Information Processing Systems.New York, USA:Curran Associates, 2013:3111-3119. [16] ZHENG J.A novel computer-aided multi-label emotion recognition of text method based on word embedding and BiLSTM[C]//Proceedings of International Informatization and Engineering Associations.[S.l.]:Computer Science and Electronic Technology International Society, 2019:10. [17] 王勇, 李战怀, 张阳.基于序列关联规则挖掘的Web日志预测精度研究[J].计算机工程, 2006, 32(12):39-41. WANG Y, LI Z H, ZHANG Y.Mining sequential association rule for improving Web document prediction[J].Computer Engineering, 2006, 32(12):39-41.(in Chinese) [18] 任肖肖.基于多源报警日志的网络安全威胁态势感知关键技术研究[D].郑州:解放军信息工程大学, 2014. REN X X.Research on crucial technologies of network security threat situation awareness based on multi-source alerts[D].Zhengzhou:PLA Information Engineering University, 2014.(in Chinese) [19] YANG J, YANG J Y, ZHANG D, et al.Feature fusion:parallel strategy vs.serial strategy[J].Pattern Recognition, 2003, 36(6):1369-1381. [20] SUN Q S, ZHONG J, HENG P A, et al.A novel feature fusion method based on partial least squares regression[C]//Proceedings of ICAPR'05.Berlin, Germany:Springer, 2005, 268-277. [21] WEI X, LING H, ARMANDO F, et al.Detecting large-scale system problems by mining console logs[C]//Proceedings of 2009 ACM Symposium on Operating Systems Principles.New York, USA:ACM Press, 2009:117-132. [22] SHI C Y, XU C J, YANG X J.Study of TFIDF algorithm[J].Journal of Computer Applications, 2009, 29(s1):167-180. |