[1] 王鹏新, 陈弛, 张树誉, 等.基于LAI和VTCI及Copula函数的冬小麦单产估测[J].农业机械学报, 2021, 52(10):255-263. WANG P X, CHEN C, ZHANG S Y, et al.Winter wheat yield estimation based on Copula function and remotely sensed LAI and VTCI[J].Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10):255-263.(in Chinese) [2] 陈思博, 潘晓文, 刘金福.基于偏最小二乘法分形计盒维数的冲击定位方法[J].振动与冲击, 2021, 40(2):97-102. CHEN S B, PAN X W, LIU J F.Impact localization method based on the partial least squares regression fractal dimension[J].Journal of Vibration and Shock, 2021, 40(2):97-102.(in Chinese) [3] 王毅红, 张建雄, 兰官奇, 等.压制生土砖强度的人工神经网络预测模型[J].华南理工大学学报(自然科学版), 2020, 48(7):115-121. WANG Y H, ZHANG J X, LAN G Q, et al.Artificial neural network prediction model for compressive strength of compacted earth blocks[J].Journal of South China University of Technology (Natural Science Edition), 2020, 48(7):115-121.(in Chinese) [4] 闫长斌, 汪鹤健, 周建军, 等.基于Bootstrap-SVR-ANN算法的TBM施工速度预测[J].岩土工程学报, 2021, 43(6):1078-1087. YAN C B, WANG H J, ZHOU J J, et al.Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm[J].Chinese Journal of Geotechnical Engineering, 2021, 43(6):1078-1087.(in Chinese) [5] HINTON G E, OSINDERO S, TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation, 2006, 18(7):1527-1554. [6] HASSAN R U L, LI C G, LIU Y T.Online dynamic security assessment of wind integrated power system using SDAE with SVM ensemble boosting learner[J].International Journal of Electrical Power &Energy Systems, 2021, 125:106429. [7] 饶利波, 庞涛, 纪然仕, 等.基于高光谱成像技术结合堆栈自动编码器-极限学习机方法的苹果硬度检测[J].激光与光电子学进展, 2019, 56(11):247-253. RAO L B, PANG T, JI R S, et al.Firmness detection for apples based on hyperspectral imaging technology combined with stack autoencoder-extreme learning machine method[J].Laser &Optoelectronics Progress, 2019, 56(11):247-253.(in Chinese) [8] KHALIL R A, JONES E, BABAR M I, et al.Speech emotion recognition using deep learning techniques:a review[J].IEEE Access, 2019, 7:117327-117345. [9] HOU L, LUO X Y, WANG Z Y, et al.Representation learning via a semi-supervised stacked distance autoencoder for image classification[J].Frontiers of Information Technology &Electronic Engineering, 2020, 21(7):1005-1018. [10] HAO X, ZHANG G G, MA S.Deep learning[J].International Journal of Semantic Computing, 2016, 10(3):417-439. [11] TANYILDIZI H, ŞENGÜR A, AKBULUT Y, et al.Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed to high temperatures[J].Frontiers of Structural and Civil Engineering, 2020, 14(6):1316-1330. [12] DUAN M X, LI K L, LI K Q.An ensemble CNN2ELM for age estimation[J].IEEE Transactions on Information Forensics and Security, 2018, 13(3):758-772. [13] 张国令, 王晓丹, 李睿, 等.基于栈式降噪稀疏自编码器的极限学习机[J].计算机工程, 2020, 46(9):61-67. ZHANG G L, WANG X D, LI R, et al.Extreme learning machine based on stacked denoising sparse auto-encoder[J].Computer Engineering, 2020, 46(9):61-67.(in Chinese) [14] LEI Y X, KARIMI H R, CEN L H, et al.Processes soft modeling based on stacked autoencoders and wavelet extreme learning machine for aluminum plant-wide application[J].Control Engineering Practice, 2021, 108:104706. [15] YIN J, YAN X F.Stacked sparse autoencoders monitoring model based on fault-related variable selection[J].Soft Computing, 2021, 25(5):3531-3543. [16] 翟华伟, 崔立成, 张维石.一种改进灵敏度分析的在线自适应极限学习机算法[J].小型微型计算机系统, 2019, 40(7):1386-1390. ZHAI H W, CUI L C, ZHANG W S.Novel online adaptive algorithm of extreme learning machine based on improved sensitivity analysis[J].Journal of Chinese Computer Systems, 2019, 40(7):1386-1390.(in Chinese) [17] VINCENT P, LAROCHELLE H, BENGIO Y, et al.Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning.New York, USA:ACM Press, 2008:1-8. [18] 普运伟, 郭江, 刘涛涛, 等.基于模糊函数等高线与栈式降噪自编码器的雷达辐射源信号识别[J].仪器仪表学报, 2021, 42(1):207-216. PU Y W, GUO J, LIU T T, et al.Radar emitter signal recognition based on ambiguity function contour lines and stacked denoising auto-encoders[J].Chinese Journal of Scientific Instrument, 2021, 42(1):207-216.(in Chinese) [19] HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine:theory and applications[J].Neurocomputing, 2006, 70(1/2/3):489-501. [20] YANG L Q, ZHANG J W, WANG X Z, et al.An improved ELM-based and data preprocessing integrated approach for phishing detection considering comprehensive features[J].Expert Systems With Applications, 2021, 165:113863. [21] HUANG Z Y, YU Y L, GU J, et al.An efficient method for traffic sign recognition based on extreme learning machine[J].IEEE Transactions on Cybernetics, 2017, 47(4):920-933. [22] 王晓丹, 来杰, 李睿, 等.多层去噪极限学习机[J].吉林大学学报(工学版), 2020, 50(3):1031-1039. WANG X D, LAI J, LI R, et al.Multilayer denoising extreme learning machine[J].Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3):1031-1039.(in Chinese) [23] 徐静林, 黄丽霞, 张雪英, 等.NRS-SVM两阶段遗传算法的多晶硅铸锭配料质量分析[J].太原理工大学学报, 2021, 52(3):417-423. XU J L, HUANG L X, ZHANG X Y, et al.Quality analysis of polysilicon ingot batching using NRS-SVM two-stage genetic algorithm[J].Journal of Taiyuan University of Technology, 2021, 52(3):417-423.(in Chinese) |