[1] 刘建伟, 谢浩杰, 罗雄麟.生成对抗网络在各领域应用研究进展[J].自动化学报, 2020, 46(12):2500-2536. LIU J W, XIE H J, LUO X L.Research progress on application of generative adversarial networks in various fields[J].Acta Automatica Sinica, 2020, 46(12):2500-2536.(in Chinese) [2] 付建平, 赵海燕, 曹健, 等.面向业务过程异常检测的深度学习模型BPAD-LS[J].小型微型计算机系统, 2022, 43(5):902-912. FU J P, ZHAO H Y, CAO J, et al.Deep learning model BPAD-LS for business process anomaly detection[J]. Journal of Chinese Computer Systems, 2022, 43(5):902-912.(in Chinese) [3] 黄义妨, 魏丹丹, 武淼, 等.面向不同传感器与复杂场景的人脸识别系统防伪方法综述[J].计算机工程, 2021, 47(12):1-18. HUANG Y F, WEI D D, WU M, et al.Overview of anti-spoofing methods of face recognition systems for different sensors and complex scenes[J].Computer Engineering, 2021, 47(12):1-18.(in Chinese) [4] 杨涵方, 周向东.基于深度稀疏辨别的跨领域图像分类[J].计算机工程, 2018, 44(4):310-316. YANG H F, ZHOU X D.Cross domain image classification based on deep sparse discrimination[J].Computer Engineering, 2018, 44(4):310-316.(in Chinese) [5] 申铉京, 张雪峰, 王玉, 等.像素级卷积神经网络多聚焦图像融合算法[J].吉林大学学报(工学版), 2022, 52(8):1857-1864. SHEN X J, ZHANG X F, WANG Y, et al.Multi-focus image fusion algorithm based on pixel-level convolutional neural network[J].Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8):1857-1864.(in Chinese) [6] 杨春玲, 凌茜.基于深度学习的两阶段多假设视频压缩感知重构算法[J].华南理工大学学报(自然科学版), 2021, 49(6):88-99. YANG C L, LING X.Two-stage multi-hypothesis network for compressed video sensing reconstruction algorithms based on deep learning[J].Journal of South China University of Technology (Natural Science Edition), 2021, 49(6):88-99.(in Chinese) [7] 蓝天, 彭川, 李森, 等.基于RefineNet的端到端语音增强方法[J].自动化学报, 2022, 48(2):554-563. LAN T, PENG C, LI S, et al.RefineNet-based end-to-end speech enhancement[J].Acta Automatica Sinica, 2022, 48(2):554-563.(in Chinese) [8] 程诚, 任佳.一种基于雷达图表示的数值型数据的CNN分类方法[J].信息与控制, 2019, 48(4):429-436. CHENG C, REN J.A classification method of CNN for numerical data based on radar chart representation[J].Information and Control, 2019, 48(4):429-436.(in Chinese) [9] MONTI F, BOSCAINI D, MASCI J, et al.Geometric deep learning on graphs and manifolds using mixture model CNNs[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5425-5434. [10] MA J B, WANG W, WANG L.Irregular convolutional neural networks[C]//Proceedings of the 4th IAPR Asian Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:268-273. [11] SHANKAR V, KUMAR V, DEVAGADE U, et al.Heart disease prediction using CNN algorithm[J].SN Computer Science, 2020, 1(3):1-8. [12] DAI J F, QI H Z, XIONG Y W, et al.Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:764-773. [13] BUDA M, MAKI A, MAZUROWSKI M A.A systematic study of the class imbalance problem in convolutional neural networks[J].Neural Networks, 2018, 106:249-259. [14] GUO S N, LIN Y F, LI S J, et al.Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J].IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10):3913-3926. [15] KO Y, HSU P, CHENG M, et al.Customer retention prediction with CNN[C]//Proceedings of the 4th International Conference on Data Mining and Big Data.Chiang Mai, Thailand:[s.n.], 2019:104-113. [16] ZHANG M L, ZHOU Z H.ML-KNN:a lazy learning approach to multi-label learning[J].Pattern Recognition, 2007, 40(7):2038-2048. [17] VAPNIK V.The natural of statistical learning theory[M].Berlin, Germany:Springer, 1995. [18] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1-9. [19] SZEGEDY C, IOFFE S, VANHOUCKE V, et al.Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1-12. [20] CSDN中文开发者社区.基于CNN的鸢尾花分类器[EB/OL].[2020-08-15].https://blog.csdn.net/qq_38581886/article/details/107607743. [21] YU F, KOLTUN V.Multi-scale context aggregation by dilated convolutions[EB/OL].[2020-08-15].https://arxiv.org/abs/1511.07122. [22] RADFORD A, METZ L, CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2020-08-15].https://arxiv.org/abs/1511.06434. [23] SONG X C.UC irvine machine learning repository, Beijing PM2.5 data set[EB/OL].[2020-08-15].http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data. |