[1] 李娇娇, 孙红岩, 董雨, 等.基于深度学习的3维点云处理综述[J].计算机研究与发展, 2022, 59(5):1160-1179. LI J J, SUN H Y, DONG Y, et al.Survey of 3-dimensional point cloud processing based on deep learning[J].Journal of Computer Research and Development, 2022, 59(5):1160-1179.(in Chinese) [2] 霍占强, 王勇杰, 雒芬, 等.基于超点图网络的三维点云室内场景分割模型[J].计算机工程, 2021, 47(12):308-315. HUO Z Q, WANG Y J, LUO F, et al.Indoor scene segmentation model using three-dimensional point cloud based on super point graph network[J].Computer Engineering, 2021, 47(12):308-315.(in Chinese) [3] 张诚, 黄丹丹, 刘智.动态环境下的语义SLAM算法[J].信息与控制, 2021, 50(3):297-307. ZHANG C, HUANG D D, LIU Z.Semantic SLAM algorithm based on dynamic environment[J].Information and Control, 2021, 50(3):297-307.(in Chinese) [4] CHARLES R Q, HAO S, MO K C, et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:77-85. [5] HU Q Y, YANG B, XIE L H, et al.RandLA-net:efficient semantic segmentation of large-scale point clouds[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11105-11114. [6] WANG Y, SUN Y B, LIU Z W, et al.Dynamic graph CNN for learning on point clouds[J].ACM Transactions on Graphics, 2019, 38(5):1-12. [7] HUA B S, TRAN M K, YEUNG S K.Pointwise convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:984-993. [8] 郑乐乐, 韩慧妍, 韩燮.基于显著性与弱凸性的三维点云模型分割[J].计算机工程, 2018, 44(4):299-304. ZHENG L L, HAN H Y, HAN X.Three-dimensional point cloud model segmentation based on significance and weak convexity[J].Computer Engineering, 2018, 44(4):299-304.(in Chinese) [9] 顾砾, 季怡, 刘纯平.基于多模态特征融合的三维点云分类方法[J].计算机工程, 2021, 47(2):279-284. GU L, JI Y, LIU C P.Classification method of three-dimensional point cloud based on multiple modal feature fusion[J].Computer Engineering, 2021, 47(2):279-284.(in Chinese) [10] CHEN S H, NIU S F, LAN T, et al.PCT:large-scale 3D point cloud representations via graph inception networks with applications to autonomous driving[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2019:4395-4399. [11] LANDRIEU L, SIMONOVSKY M.Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4558-4567. [12] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [13] OH S H.Generalization of the cross-entropy error function to improve the error backpropagation algorithm[C]//Proceedings of International Conference on Neural Networks.Washington D.C., USA:IEEE Press, 1997:1856-1861. [14] BEHLEY J, GARBADE M, MILIOTO A, et al.SemanticKITTI:a dataset for semantic scene understanding of LiDAR sequences[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:9296-9306. [15] CAO Y, ZHANG X J, DUAN B H, et al.An improved method to build the KD-tree based on presorted results[C]//Proceedings of IEEE International Conference on Software Engineering and Service Science.Washington D.C., USA:IEEE Press, 2020:71-75. [16] SU H, JAMPANI V, SUN D Q, et al.SPLATNet:sparse lattice networks for point cloud processing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2530-2539. [17] QI C R, YI L, SU H, et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2017:5100-5109. [18] TATARCHENKO M, PARK J, KOLTUN V, et al.Tangent convolutions for dense prediction in 3D[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3887-3896. [19] HACKEL T, SAVINOV N, LADICKY L, et al.Semantic3D net:a new large-scale point cloud classification benchmark[EB/OL].[2021-12-05].https://arxiv.org/abs/1704.03847. [20] BOULCH A, GUERRY J, LE SAUX B, et al.SnapNet:3D point cloud semantic labeling with 2D deep segmentation networks[J].Computers & Graphics, 2018, 71:189-198. [21] TCHAPMI L, CHOY C, ARMENI I, et al.SEGCloud:semantic segmentation of 3D point clouds[C]//Proceedings of International Conference on 3D Vision.Washington D.C., USA:IEEE Press, 2017:537-547. [22] THOMAS H, GOULETTE F, DESCHAUD J E, et al.Semantic classification of 3D point clouds with multiscale spherical neighborhoods[C]//Proceedings of International Conference on 3D Vision.Washington D.C., USA:IEEE Press, 2018:390-398. [23] ROYNARD X, DESCHAUD J E, GOULETTE F.Classification of point cloud scenes with multiscale voxel deep network[EB/OL].[2021-12-05].https://arxiv.org/pdf/1804.03583.pdf. [24] ZHANG Z Y, HUA B S, YEUNG S K.ShellNet:efficient point cloud convolutional neural networks using concentric shells statistics[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1607-1616. [25] WANG L, HUANG Y C, HOU Y L, et al.Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10288-10297. [26] THOMAS H, QI C R, DESCHAUD J E, et al.KPConv:flexible and deformable convolution for point clouds[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6410-6419. [27] 李少飞, 史泽林, 庄春刚.基于深度学习的物体点云六维位姿估计方法[J].计算机工程, 2021, 47(8):216-223. LI S F, SHI Z L, ZHUANG C G.Deep learning-based 6D object pose estimation method from point clouds[J].Computer Engineering, 2021, 47(8):216-223.(in Chinese) |