作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• •    

HDMapFusion:用于自动驾驶的多模态融合高清地图生成

  • 出版日期:2025-04-24 发布日期:2025-04-24

HDMapFusion: HD Map Generation with Multi-Modality Fusion for  Autonomous Driving

  • Online:2025-04-24 Published:2025-04-24

摘要: 高清(HD)环境语义地图的生成是自动驾驶系统中不可或缺的关键技术。针对相机与激光雷达在感知任务中存在的模态差异问题,本文提出了一种创新的多模态融合范式HDMapFusion。与传统的直接融合原始传感器数据方法不同,本方法通过将相机和激光雷达特征统一转化为鸟瞰图(BEV)表示,实现了多模态信息的物理可解释性融合。在nuScenes基准数据集上的实验结果表明,HDMapFusion在HD地图生成精度方面显著优于现有基准模型,其中IoU得分提升了23.0%,充分验证了该方法的有效性和优越性。

Abstract: The generation of high-definition (HD) environmental semantic maps plays a crucial and irreplaceable role in autonomous driving systems. To address the modality discrepancy between cameras and LiDAR in perception tasks, this paper proposes an innovative multi-modal fusion paradigm, HDMapFusion. Unlike traditional methods that directly fuse raw sensor data, this approach achieves physically interpretable fusion of multi-modal information by unifying camera and LiDAR features into a bird's-eye view (BEV) representation. Experimental results on the nuScenes benchmark dataset demonstrate that HDMapFusion significantly outperforms existing baseline models in HD map generation accuracy, with a 23.0% improvement in IoU score, fully validating the effectiveness and superiority of the proposed method.