[1] Liao, B., Chen, S., Wang, X., Cheng, T., Zhang, Q., Liu,
W., Huang, C.: Maptr: Structured modeling and learning
for online vectorized hd map construction[C]//Proceedings
of International Conference on Learning Representations
(ICLR), 2023.
[2] 赵南南, 高翡晨. 基于改进 YOLOv8 的交通场景实例分
割算法[J]. 计算机工程, 2025, 51(1): 198-207.
ZHAO Nannan, GAO Feichen. Improved YOLOv8-based
Algorithm for Instance Segmentation in Traffic Scenes[J].
Computer Engineering, 2025, 51(1): 198-207.
[3] 秦严严. 交通流分析理论[M]. 人民交通出版社, 2023.
Qin Yanyan. Theory of Traffic Flow Analysis[M]. China
Communications Press, 2023.
[4] Li, Q., Wang, Y., Wang, Y., Zhao, H.: Hdmapnet: An
online hd map construction and evaluation
framework[C]//Proceedings of International Conference
on Robotics and Automation (ICRA), 2021: 4628-4634.
[5] 阳钧, 鲍泓, 梁军, 马楠. 一种基于高精度地图的路径
跟踪方法[J]. 计算机工程, 2018, 44(7): 8-13.
YANG Jun, BAO Hong, LIANG Jun, MA Nan. A Path
Tracking Method Based on High Precision Map[J].
Computer Engineering, 2018, 44(7): 8-13.
[6] 刘宏纬, 邵东恒, 杨剑, 魏宪, 李科, 游雄. 基于鸟瞰图
融合的多级旋转等变目标检测网络[J]. 计算机工程,
2024, 50(11): 246-257.
LIU Hongwei, SHAO Dongheng, YANG Jian, WEI Xian,
LI Ke, YOU Xiong. Multi-Level Rotational Equivariant
Object Detection Network Based on BEV Fusion[J].
Computer Engineering, 2024, 50(11): 246-257.
[7] Liu Z, Tang H, Amini A, et al. Bevfusion: Multi-task
multi-sensor fusion with unified bird's-eye view
representation[C]//Proceedings of IEEE international
conference on robotics and automation (ICRA). IEEE,
2023: 2774-2781.
[8] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you
need. Advances in neural information processing
systems[J]. Advances in neural information processing
systems, 2017, 30.
[9] Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E.,
Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O.:
nuscenes: A multimodal dataset for autonomous
driving[C]//Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019:
11618-11628.
[10] Dong H, Gu W, Zhang X, et al. Superfusion: Multilevel
lidar-camera fusion for long-range hd map
generation[C]//Proceedings of IEEE International
Conference on Robotics and Automation (ICRA). IEEE,
2024: 9056-9062
[11] Sun, L., Yang, K., Hu, X., Hu, W., Wang, K.: Real-time
fusion network for rgb-d semantic segmentation
incorporating unexpected obstacle detection for roaddriving images. IEEE Robotics and Automation Letters 5,
2020: 5558-5565.
[12] Hu S, Chen L, Wu P, et al. St-p3: End-to-end vision-based
autonomous driving via spatial-temporal feature
learning[C]//Proceedings of European Conference on
Computer Vision. 2022: 533-549
[13] Rhinehart, N., McAllister, R., Kitani, K., Levine, S.:
Precog: Prediction conditioned on goals in visual
multi-agent settings[C]//Proceedings of IEEE/CVF
International Conference on Computer Vision (ICCV),
2019: 2821-2830.
[14] Xu, H., Yang, C., Li, Z.: Od-slam: Real-time localization
and mapping in dynamic environment through
multi-sensor fusion[C]//Proceedings of International
Conference on Advanced Robotics and Mechatronics
(ICARM), 2020: 172-177.
[15] Chen, J., Li, X., Xie, J., Li, J., Qian, J., Yang, J.: Cbi-gnn:
Crossscale bilateral graph neural network for 3d object
detection[J]. IEEE Transactions on Intelligent
Transportation Systems, 2022, 23(12), 23124-23135.
[16] Philion J, Fidler S. Lift, splat, shoot: Encoding images
from arbitrary camera rigs by implicitly unprojecting to
3d[C]//Proceedings of European Conference on Computer
Vision. 2020: 194-210.
[17] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.:
Imagenet: A large-scale hierarchical image
database[C]//Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2009:
248-255.
[18] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning
for image recognition[C]//Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016: 770-778
[19] Lang A H, Vora S, Caesar H, et al. Pointpillars: Fast
encoders for object detection from point
clouds[C]//Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019:
12697-12705.
[20] Qi, C., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep
learning on point sets for 3d classification and
segmentation[C]//Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2016: 77-85.
[21] Man, Y., Gui, L., Wang, Y.X.: CroMA: Cross-modality
adaptation for monocular BEV perception[C]//Proceedings
of International Conference on Learning Representations
(ICLR) (2023)
[22] Radford, A., Narasimhan, K.: Improving language
understanding by generative pre-training[C]//Proceedings
of International Conference on Learning Representations
(ICLR), 2018.
[23] Deng, L., Yang, M., Li, H., Li, T., Hu, B., Wang, C.:
Restricted deformable convolution-based road scene
semantic segmentation using surround view cameras[J].
IEEE Transactions on Intelligent Transportation Systems
21,2018: 4350-4362.
[24] Pan, B., Sun, J., Leung, H.Y.T., Andonian, A., Zhou, B.:
Cross-view semantic segmentation for sensing
surroundings[J]. IEEE Robotics and Automation Letters 5,
2019: 4867-4873.
[25] 吴永庆, 姜正宇. 基于解耦合动态时空卷积循环网络的
交通流预测 [J]. 计算机工程 , doi:
10.19678/j.issn.1000-3428.0070319.
WU Yongqing, JIANG Zhengyu. Traffic Flow Prediction
Based on Decoupled Dynamic Spatial-Temporal
Convolutional Recurrent Network[J]. Computer
Engineering, doi: 10.19678/j.issn.1000-3428.0070319.
[26] Loshchilov, I., Hutter, F.: Decoupled weight decay
regularization[C]//Proceedings of International Conference
on Learning Representations (ICLR), 2017.
[27] Lin T Y, Maire M, Belongie S, et al. Microsoft coco:
Common objects in context[C]//Proceedings of European
Conference on Computer Vision. 2014: 740-755.
|