作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 移动互联与通信技术 • 上一篇    下一篇

基于潜在变量的异构网络节点分类模型研究

尹向东1,2,肖辉军3   

  1. (1.湖南科技学院计算机与通信工程系,湖南 永州 425100; 2.中南大学信息科学与工程学院,长沙 410083;3.南京大学国际地球系统科学研究所,南京 210046)
  • 收稿日期:2014-11-25 出版日期:2015-07-15 发布日期:2015-07-15
  • 作者简介:尹向东(1976-),男,副教授、硕士,主研方向:移动计算,无线传感器网络;肖辉军,副教授、博士。
  • 基金资助:
    湖南省教育厅科学研究优秀青年基金资助项目(14B070);湖南省科技计划基金资助项目(2014FJ6095)。

Research on Heterogeneous Network Node Classification Model Based on Latent Variables

YIN Xiangdong  1,2,XIAO Huijun 3   

  1. (1.Department of Computer and Communication Engineering,Hunan University of Science and Engineering,Yongzhou 425100,China;2.School of Information Science and Engineering,Central South University,Changsha 410083,China; 3.International Earth System Science Research Institute,Nanjing University,Nanjing 210046,China)
  • Received:2014-11-25 Online:2015-07-15 Published:2015-07-15

摘要: 传统异构网络节点标注算法将网络映射为多个同构网络,忽视了不同类型节点之间的相关性,降低了分类结果的准确性。为此,将异构网络节点之间的关系表示为潜在变量,提出一种异构网络环境下的节点标签模型。描述同构网络的节点标注问题,分析传统同构网络标签模型扩展算法的局限性,将异构网络中的节点用潜在的多维向量表示,基于该潜在向量给出异构网络节点标签模型,应用随机梯度下降法进行模型求解,并分析其复杂性。实验结果表明,该模型的预测准确性优于同构映射模型和非监督潜在空间模型。

关键词: 社会网络, 标签, 分类算法, 社团挖掘, 学习算法

Abstract: Traditional classification algorithms in heterogeneous networks map the original network into multiple homogeneous networks,and neglect the correlation between nodes of different types.This paper represents the relationships between heterogeneous nodes as latent variants,and proposes a labeling model and corresponding classification algorithm in heterogeneous networks.This paper describes the problem of node labeling in homogeneous networks,analyzes the drawbacks of the algorithms that map one heterogeneous network into multiple homogeneous networks,represents the nodes in heterogeneous networks as vectors,proposes a labeling model based on vectors,applies stochastic gradient descent method to solve the proposed model,and analyzes the complexity of the algorithm.Experimental results show that,the proposed node classification model in heterogeneous networks is more accurate than both mapping homogeneous model and unsupervised latent space model.

Key words: social network, label, classification algorithm, community discovery, learning algorithm

中图分类号: