参考文献
[1]Seem J E.Using Intelligent Data Analysis to Detect Abnormal Energy Consumption in Buildings[J].Energy and Buildings,2007,39(1):52-58.
[2]Khan I,Capozzoli A,Corgnati S P,et al.Fault Detection Analysis of Building Energy Consumption Using Data Mining Techniques[J].Energy Procedia,2013,42(42):557-566.
[3]Capozzoli A,Lauro F,Khan I.Fault Detection Analysis Using Data Mining Techniques for a Cluster of Smart Office Buildings[J].Expert Systems with Applications,2015,42(9):4324-4338.
[4]Dodier R H,Kreider J F.Detecting Whole Building Energy Problems[J].ASHRAE Transactions,1999,105(1):579-589.
[5]Lin G,Claridge D E.A Temperature-based Approach to Detect Abnormal Building Energy Consumption[J].Energy and Buildings,2015,93(1):110-118.
[6]国家住房和城乡建设部,国家教育部.高等学校校园建筑节能监管系统建设技术导则(试行)[EB/OL].(2009-10-15).http://www.mohurd.gov.cn/.
[7]Li X,Bowers C P,Schnier T.Classification of Energy Consumption in Buildings with Outlier Detection[J].IEEE Transactions on Industrial Electronics,2010,57(11):3639-3644.
[8]Hoglin D C,Mosteller F,Tukey J W.Understanding Robust and Exploratory Data Analysis[M].New York,USA:Wiley,1983.
[9]Seem J E.Pattern Recognition Algorithm for Determin-ing Days of the Week with Similar Energy Consumption Profiles[J].Energy and Buildings,2005,37(2):127-139.
[10]Iglesias F,Kastner W.Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns[J].Energies,2013,6(2):579-597.
[11]Haberl J S,Abbas M.Development of Graphical Indices for Viewing Building Energy Data:Part II[J].Journal of Solar Energy Engineering,1998,120(3):162-167.
[12]Ester M,Kriegel H P,Sander J,et al.A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovering in Databases and Data Mining.Washington D.C.,USA:IEEE Press,1996:226-231.
(下转第27页)
(上接第20页)
[13]蔡颖琨,谢昆青,马修军.屏蔽了输入参数敏感性的DBSCAN改进算法[J].北京大学学报(自然科学版),2004,40(3):480-486.
[14]Xu X,Ester M,Kriegel H P,et al.A Distribution-based Clustering Algorithm for Mining in Large Spatial Databases[C]//Proceedings of the 14th International Conference on Data Engineering.Washington D.C.,USA:IEEE Press,1998:324-331.
[15]夏鲁宁,荆继武.SA-DBSCAN:一种自适应基于密度聚类算法[J].中国科学院大学学报,2009,26(4):530-538.
[16]罗可,林睦纲,郗东妹.数据挖掘中分类算法综述[J].计算机工程,2005,31(1):3-5.
[17]Quinlan T R.C4.5:Programs for Machine Learning[M].San Mateo,USA:Morgan Kaufamann,1993.
[18]Han J,Kamber M.Data Mining:Concepts and Techniques[M].San Mateo,USA:Morgan Kaufmann,2000.
[19]Breunig M,Kriegel H P,Ng R,et al.LOF:Identifying Density-based Local Outliers[C]//Proceedings of ACM SIGMOD International Conference on Management of Data.New York,USA:ACM Press,2000:93-104.
[20]Ester M,Kriegel H P,Sander J,et al.Incremental Clustering for Mining in a Data Warehousing Environment[C]//Proceedings of the 24th International Conference on Very Large Data Bases.San Mateo,USA:Morgan Kaufmann,1998:323-333.
编辑陆燕菲 |