[1] OLIVA A,TORRALBA A.Modeling the shape of the scene:a holistic representation of the spatial envelope[J].International Journal of Computer Vision,2001,42(3):145-175. [2] SIVIC J,ZISSERMAN A.Video Google:a text retrieval approach to object matching in videos[C]//Proceedings of the 9th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2003:1470-1477. [3] ZHENG Xinwei,SUN Xian,FU Kun,et al.Automatic annotation of satellite images via multi-feature joint sparse coding with spatial relation constraint[J].IEEE Geoscience and Remote Sensing Letters,2013,10(4):652-656. [4] XU Suhui,MU Xiaodong,ZHAO Peng,et al.Scenario classification of remote sensing image based on multi-scale feature and deep neural network[J].Acta Geodaetica et Cartographica Sinica,2016,45(7):834-840.(in Chinese)许夙晖,慕晓冬,赵鹏,等.利用多尺度特征与深度网络对遥感影像进行场景分类[J].测绘学报,2016,45(7):834-840. [5] ZHAO Lijun,TANG Ping,HUO Lianzhi.Land-use scene classification using a concentric circle-structured multi-scale bag-of-visual-words mode[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(12):4620-4613. [6] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7533):436-444. [7] ZHANG Deyuan,CHANG Yunxiang,ZHANG Liguo,et al.SAT-CNN:Convolutional neural network framework for remote sensing image classification[J].Journal of Chinese Computer Systems,2018,39(4):859-864.(in Chinese)张德园,常云翔,张利国,等.SAT-CNN:基于卷积神经网络的遥感图像分类算法[J].小型微型计算机系统,2018,39(4):859-864. [8] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of Advances in Neural Information Processing Systems.New York,USA:ACM Press,2012:1097-1105. [9] LIU Yang,FU Zhengye,ZHENG Fengbin.Scene classification of high-resolution remote sensing image based on multimedia neural cognitive computing[J].Systems Engineering and Electronics,2015,37(11):2623-2633.(in Chinese)刘扬,付征叶,郑逢斌.基于神经认知计算模型的高分辨率遥感图像场景分类[J].系统工程与电子技术,2015,37(11):2623-2633. [10] HE Xiaofei,ZOU Zhengrong,TAO Chao,et al.Combined saliency with multi-convolutional neural network for high resolution remote sensing scene classification[J].Acta Geodaetica et Cartographica Sinica,2016,45(9):1073-1080.(in Chinese)何小飞,邹峥嵘,陶超,等.联合显著性和多层卷积神经网络的高分影像场景分类[J].测绘学报,2016,45(9):1073-1080. [11] YEUNG H,HOU J H,CHEN X M,et al.Light field spatial super-resolution using deep efficient spatial-angular separable convolution[J].IEEE Transactions on Image Processing,2019,29(5):2319-2330. [12] LIU Jinping,TANG Zhaohui,ZHU Jianyong,et al.Statistical modelling of spatial structures based image classification[J].Control and Decision,2015,30(6):1092-1098.(in Chinese)刘金平,唐朝晖,朱建勇,等.基于空间结构统计建模的图像分类方法[J].控制与决策,2015,30(6):1092-1098. [13] LI Xiang,HAN Ping,WU Renbiao,et al.SAR target and shadow segmentation based on Weibull distribution[J].Systems Engineering and Electronics,2007,29(5):677-679.(in Chinese)李响,韩萍,吴仁彪,等.一种基于Weibull分布的SAR图像分割方法[J].系统工程与电子技术,2007,29(5):677-679. [14] LEI Jie,DU Xin,ZHU Yunfang,et al.Omni-directional image unwarping based on Taylor model[J].Journal of Image and Graphics,2010,15(10):1430-1435.(in Chinese)雷杰,杜歆,朱云芳,等.基于泰勒模型的全向图像展开[J].中国图象图形学报,2010,15(10):1430-1435. [15] SHAO Dangguo,DENG Yangyang,XIANG Yan,et al.Speckle reduction based on adaptive gauss filtering[J].Journal of Data Acquisition and Processing,2017,32(4):746-753.(in Chinese)邵党国,邓阳阳,相艳,等.基于自适应高斯滤波的超声斑点降噪[J].数据采集与处理,2017,32(4):746-753. [16] WAN Lihong,LIU Na,HUO Hong,et al.Selective convolutional neural networks and cascade classifiers for remote sensing image classification[J].Remote Sensing Letters,2017,8(10):917-926. [17] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. [18] WANG Shengyu,ZENG Biqing,SHANG Qi,et al.Word attention-based convolutional neural networks for sentiment analysis[J].Journal of Chinese Information Processing,2018,32(9):123-131.(in Chinese)王盛玉,曾碧卿,商齐,等.基于词注意力卷积神经网络模型的情感分析研究[J].中文信息学报,2018,32(9):123-131. [19] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[EB/OL].[2019-01-02].https://arxiv.org/pdf/1709.01507.pdf. [20] WANG Yanhua,CHEN Wei,WANG Junfu,et al.Fast target detection method of SAR images based on cascade CFAR[J].Modern Radar,2019,44(2):21-25.(in Chinese)王彦华,陈维,王军福,等.基于级联CFAR的SAR图像目标快速检测方法[J].现代雷达,2019,44(2):21-25. [21] DUAN Jia,HE Zhihua,WU Yifeng.Segmentation of SAR ground targets based on sparse representation[J].Modern Radar,2019,44(11):25-29.(in Chinese)段佳,贺治华,吴亿锋.基于稀疏表示的SAR地面目标分割技术[J].现代雷达,2019,44(11):25-29. [22] SHI Jian,WANG Yang,HUANG Haifeng,et al.Application of BM3D algorithm in ocean SAR image denoising[J].Radar Science and Technology,2016,14(1):24-32.(in Chinese)石建,汪洋,黄海风,等.BM3D算法在海洋SAR图像去噪中的应用[J].雷达科学与技术,2016,14(1):24-32. |