[1] YUAN Yajun,LI Feifei,CHEN Qiu.Crowd behavior recognition algorithm based on combined features and deep learning[J].Computer Science,2019,46(6):305-310.(in Chinese) 袁亚军,李菲菲,陈虬.基于复合特征及深度学习的人群行为识别算法[J].计算机科学,2019,46(6):305-310. [2] KONG Weihang,LI He,XING Guanglong,et al.An automatic scale-adaptive approach with attention mechanism-based crowd spatial information for crowd counting[J].IEEE Access,2019(7):66215-66225. [3] SUN Yunmiao,LIN Feng,ZHOU Jiliu.Research progress of long short-term memory applications in mobile scenarios[J].Modern Computer,2017(35):10-15.(in Chinese) 孙运淼,林锋,周激流.长短时记忆网络在移动场景中的应用研究进展[J].现代计算机,2017(35):10-15. [4] ZHENG Hong,DENG Xiao,DENG Wenxuan.A crowd pre-warning system based on mobile locators and behavior prediction[C]//Proceedings of International Conference on Digital Home.Washington D.C.,USA:IEEE Computer Society,2016:122-127. [5] LIU Zimei,CHEN Yun,XIE Kefan.Research on the impact of crowd flow on crowd risk in large gathering spots[C]//Proceedings of International Conference on Industrial Informatics-Computing Technology.Washington D.C.,USA:IEEE Press,2017:368-371. [6] DEDOMENICO M,LIMA A,MUSOLESI M.Interdependence and predictability of human mobility and social interactions[J].Pervasive and Mobile Computing,2013,9(6):798-807. [7] MENDEZ V J F,KINKHABWALA Y,SILVER J,et al.Density-functional fluctuation theory of crowds[J].Nature Communications,2018,9(1):1-10. [8] CHSTAEDT J C,SMITH R J,MERCHANT R M,et al.Facebook language predicts depression in medical records[J].Proceedings of the National Academy of Sciences,2018,115(44):11203-11208. [9] ZHONG X,DUCKHAM M,CHONG D,et al.Real-time estimation of wildfire perimeters from curated crowd sourcing[J].Scientific Reports,2016,6(1):1-10. [10] JIAO Enwei,WU Yue.Pedistrian-crowd monitoring and prediction based on LTE[J].Communications Technology,2017,50(3):492-495.(in Chinese) 焦恩伟,吴越.基于的人群密度监控及预测[J].通信技术,2017,50(3):492-495. [11] ZHANG Shixue,LI Shijun,YU Wei,et al.Prediction on hot region of crowd abnormal gathering on unexpected event[J].China Safety Science Journal,2015,25(9):159-164.(in Chinese) 张仕学,李石君,余伟,等.突发事件人群异常聚集热点区域预测[J].中国安全科学学报,2015,25(9):159-164. [12] GONZALEZ M C,HIDALGO C A,BARABASI A L.Understanding individual human mobility patterns[J].Nature,2008,453(7196):779-782. [13] PAPPALARDO L,SIMINI F,RINZIVILLO S,et al.Returners and explorers dichotomy in human mobility[J].Nature Communications,2015,6(1):1-8. [14] CHEN Yanyan,CHEN Ning,WANG Yang,et al.Modeling pedestrian behaviors under attracting incidents using cellular automata[J].Physica A:Statistical Mechanics and Its Applications,2015,432:287-300. [15] YONG Nuo,NI Shunjiang,SHEN Shifei,et al.Uncovering stable and occasional human mobility patterns:a case study of the Beijing subway[J].Physica A:Statistical Mechanics and Its Applications,2017,492:28-38. [16] DAS M,GHOSH S K.Measuring Moran's I in a cost-efficient manner to describe a land-cover change pattern in large-scale remote sensing imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(6):2631-2639. [17] WANG Shengjin,WANG Zhichu.Studies on spatial consistency between population agglomeration and economic agglomeration in China[J].Population Journal,2017,39(6):43-50.(in Chinese)王胜今,王智初.中国人口集聚与经济集聚的空间一致性研究[J].人口学刊,2017,39(6):43-50. [18] BOROVYKH A,BOHTE S M,OOSTERLEE C W,et al.Conditional time series forecasting with convolutional neural networks[EB/OL].[2019-06-27].https://arxiv.org/pdf/1703.04691.pdf. [19] FRIEDMAN J H,HASTIE T,TIBSHIRANI R,et al.Additive logistic regression:a statistical view of boosting[J].Annals of Statistics,2000,28(2):337-407. [20] CHEN T,GUESTRIN C.XGBoost:a scalable tree boosting system[EB/OL].[2019-06-27].https://arxiv.org/pdf/1603.02754.pdf. |