作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (3): 134-141. doi: 10.19678/j.issn.1000-3428.0063989

• 人工智能与模式识别 • 上一篇    下一篇

基于邻域聚合与CNN的知识图谱实体类型补全

邹长龙, 安敬民, 李冠宇   

  1. 大连海事大学 信息科学技术学院, 辽宁 大连 116026
  • 收稿日期:2022-02-21 修回日期:2022-03-31 发布日期:2022-05-03
  • 作者简介:邹长龙(1994—),男,硕士研究生,主研方向为知识表示学习;安敬民,博士研究生;李冠宇(通信作者),教授、博士。
  • 基金资助:
    国家自然科学基金(61976032)。

Knowledge Graph Entity Type Completion Based on Neighborhood Aggregation and CNN

ZOU Changlong, AN Jingmin, LI Guanyu   

  1. Faculty of Information Science and Technology, Dalian Maritime University, Dalian 116026, Liaoning, China
  • Received:2022-02-21 Revised:2022-03-31 Published:2022-05-03

摘要: 现有知识图谱实体类型补全模型通过对实体和实体类型进行建模,以解决知识图谱中实体缺失的实体类型,但未有效地利用实体之间的关系,导致模型的实体类型补全性能不佳。提出一种基于邻域聚合与卷积神经网络的知识图谱实体类型补全模型NACE2T,其采用编码器-解码器的结构。基于注意力机制设计利用关系信息的编码器,其使用注意力机制为实体邻域中的每个关系-实体对分配不同的权重,以聚合实体邻域中实体和关系的信息,从而利用实体之间的关系。基于卷积神经网络设计一个新的知识图谱实体类型补全模型CE2T,将其作为解码器,对编码器输出的实体嵌入和实体类型嵌入进行建模与实体类型补全。实验结果表明,相比ConnectE模型,NACE2T模型在数据集FB15KET上的HITS@1和HITS@3提高约1.5%,在数据集YAGO43KET上的MRR和HITS@3提高约6%,HITS@1提高约9%,能够有效地推断知识图谱中实体缺失的实体类型。

关键词: 知识图谱, 实体类型, 邻域聚合, 注意力机制, 关系-实体对, 卷积神经网络

Abstract: Existing entity type completion models of the knowledge graph solve the entity types missing in the knowledge graph by modeling entities and entity types.However, they do not effectively use the relationships between entities, which results in the poor performance of the entity type completion of the model.An entity type completion model, NACE2T, of a knowledge graph based on neighborhood aggregation and Convolutional Neural Network(CNN) is proposed, which adopts the encoder-decoder structure.Based on the attention mechanism, an encoder is designed to use the relationship information.The attention mechanism is used to assign different weights to each relationship-entity pair in the entity neighborhood, and it is used to aggregate the information of entities and relationships in the entity neighborhood to use the relationship between entities.Based on CNN, a new entity type completion model called CE2T of knowledge graph is designed.This model is used as a decoder to model and complete entity types through entity embedding and entity type embedding of the encoder output.The experimental results show that compared with the ConnectE model, the NACE2T model HITS@1 and HITS@3 increase by approximately 1.5% on FB15KET dataset, MRR and HITS@3 increase by approximately 6%, and HITS@1 increase by approximately 9% on YAGO43KET dataset.The proposed model can effectively infer the types of entities missing in the knowledge graph.

Key words: knowledge graph, entity type, neighborhood aggregation, attention mechanism, relationship-entity pair, Convolutional Neural Network(CNN)

中图分类号: