[1] 舒世泰, 李松, 郝晓红, 等.知识图谱嵌入技术研究进展[J].计算机科学与探索, 2021, 15(11):2048-2062. SHU S T, LI S, HOU X H, et al.Knowledge graph embedding technology:a review[J].Journal of Frontiers of Computer Science & Technology, 2021, 15(11):2048-2062.(in Chinese) [2] ZHAO Y, LI Z Q, DENG W, et al.Learning entity type structured embeddings with trustworthiness on noisy knowledge graphs[J].Knowledge-Based Systems, 2021, 215:1-10. [3] ZHU Q, WEI H, SISMAN B, et al.Collective multi-type entity alignment between knowledge graphs[C]//Proceedings of the Web Conference.New York, USA:ACM Press, 2020:2241-2252. [4] CHEN S, WANG J P, JIANG F, et al.Improving entity linking by modeling latent entity type information[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2020, 34(5):7529-7537. [5] NIU G L, LI B, ZHANG Y F, et al.AutoETER:automated entity type representation for knowledge graph embedding[C]//Proceedings of Findings of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2020:1172-1181. [6] 金婧, 万怀宇, 林友芳.融合实体类别信息的知识图谱表示学习[J].计算机工程, 2021, 47(4):77-83. JIN J, WAN H Y, LIN Y F.Knowledge graph representation learning fused with entity category information[J].Computer Engineering, 2021, 47(4):77-83.(in Chinese) [7] BISWAS R, SOFRONOVA R, ALAM M, et al.Entity type prediction in knowledge graphs using embeddings[EB/OL].[2022-01-18].https://arxiv.org/abs/2004.13702v2. [8] TEACH Y C, RUFFINELLI D, BROSCHEIT S, et al.You CAN teach an old dog new tricks! on training knowledge graph embeddings[C]//Proceedings of International Conference on Learning Representations.Washington D.C., USA:[s.n.], 2020:1-10. [9] ZHANG Q, ZHANG L, QIN C, et al.A survey on knowledge graph-based recommender systems[J].Scientia Sinica Informationis, 2020, 50(7):937-956. [10] MOON C, JONES P, SAMATOVA N F.Learning entity type embeddings for knowledge graph completion[C]//Proceedings of Conference on Information and Knowledge Management.New York, USA:ACM Press, 2017:2215-2218. [11] ZHAO Y, ZHANG A X, XIE R B, et al.Connecting embeddings for knowledge graph entity typing[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2020:6419-6428. [12] DETTMERS T, MINERVINI P, STENETORP P, et al.Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2018:1811-1818. [13] MONIRUZZAMAN A B M, NAYAK R, TANG M L, et al.Fine-grained type inference in knowledge graphs via probabilistic and tensor factorization methods[C]//Proceedings of World Wide Web Conference.New York, USA:ACM Press, 2019:3093-3100. [14] LI Q.A neural model for type classification of entities for text[J].Knowledge-Based Systems, 2019, 176:122-132. [15] BORDES A, USUNIER N, GARCÍADURÁN A, et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of Conference on Neural Information Processing Systems.[S.l.]:NIPS Press, 2013:2787-2795. [16] NICKEL M, TRESP V, KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2011:809-816. [17] NICKEL M, ROSASCO L, POGGIO T.Holographic embeddings of knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2016:1955-1961. [18] MOON C S, HARENBERG S, SLANKAS J, et al.Learning contextual embeddings for knowledge graph completion[EB/OL].[2022-01-18].https://www.researchgate.net/profile/Changsung-Moon/publication/318471812_Learning_Contextual_Embeddings_for_Knowledge_Graph_Completion/links/596d4ce0458515d9265fc8b6/Learning-Contextual-Embeddings-for-Knowledge-Graph-Completion.pdf. [19] JI G L, HE S Z, XU L H, et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2015:687-696. [20] VASHISHTH S, SANYAL S, NITIN V, et al.Composition-based multi-relational graph convolutional networks[C]//Proceedings of the 8th International Conference on Learning Representations.Washington D.C., USA:[s.n.], 2020:1-15. [21] KIPF T, WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2022-01-18].https://arxiv.org/pdf/1609.02907.pdf. [22] SHANG C, TANG Y, HUANG J, et al.End-to-end structure-aware convolutional networks for knowledge base completion[EB/OL].[2022-01-18].https://arxiv.org/pdf/1811.04441.pdf. [23] ZHANG S, RAO X, TAY Y, et al.Knowledge router:learning disentangled representations for knowledge graphs[C]//Proceedings of Conference on North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg, USA:Association for Computational Linguistics, 2021:1-6. [24] NGUYEN D Q, NGUYEN T, NGUYEN D Q, et al.A novel embedding model for knowledge base completion based on convolutional neural network[EB/OL].[2022-01-18].https://arxiv.org/pdf/1712.02121.pdf. [25] ROSSO P, YANG D Q, CUDRÉ-MAUROUX P.Beyond triplets:hyper-relational knowledge graph embedding for link prediction[C]//Proceedings of the Web Conference. New York, USA:ACM Press, 2020:1885-1896. [26] NGUYEN D Q, VU T, NGUYEN T D, et al.A capsule network-based embedding model for knowledge graph completion and search personalization[EB/OL].[2022-01-18].https://arxiv.org/pdf/1808.04122.pdf. |