[1] 张小瑞, 陈旋, 孙伟, 等.基于深度学习的车辆再识别研究进展[J].计算机工程, 2020, 46(11):1-11. ZHANG X R, CHEN X, SUN W, et al.Progress of vehicle re-identification research based on deep learning[J].Computer Engineering, 2020, 46(11):1-11.(in Chinese) [2] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [3] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [4] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-09-10].https://arxiv.org/abs/1804.02767. [5] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot MultiBox detectorr[C]//Proceedings of ECCVʼ16.Berlin, Germany:Springer, 2016:21-37. [6] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. [7] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2016:1440-1448. [8] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [9] HE K M, GKIOXARI G, DOLLÁR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2980-2988. [10] JU M R, LUO J N, LIU G Q, et al.A real-time small target detection network[J].Signal, Image and Video Processing, 2021, 15(6):1265-1273. [11] ZHANG J, MENG Y Z, CHEN Z P.A small target detection method based on deep learning with considerate feature and effectively expanded sample size[J].IEEE Access, 2021, 9:96559-96572. [12] LIAN J, YIN Y, LI L, et al.Small object detection in traffic scenes based on attention feature fusion[J].Sensors, 2021, 21(9):3031. [13] WANG A T, SUN Y H, KORTYLEWSKI A, et al.Robust object detection under occlusion with context-aware compositional nets[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:12642-12651. [14] 阳珊, 王建, 胡莉, 等.改进RetinaNet的遮挡目标检测算法研究[J].计算机工程与应用, 2022, 58(11):209-214. YANG S, WANG J, HU L, et al.Research on occluded object detection by improved RetinaNet[J].Computer Engineering and Applications, 2022, 58(11):209-214.(in Chinese) [15] 候少麒, 梁杰, 殷康宁, 等.基于空洞卷积金字塔的目标检测算法[J].电子科技大学学报, 2021, 50(6):843-851. HOU S Q, LIANG J, YIN K N, et al.Object detection algorithm based on atrous convolutional pyramid[J].Journal of University of Electronic Science and Technology of China, 2021, 50(6):843-851.(in Chinese) [16] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-09-10].https://arxiv.org/abs/2004.10934. [17] WANG C Y, MARK LIAO H Y, WU Y H, et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2020:1571-1580. [18] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [19] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8759-8768. [20] WANG Q L, WU B G, ZHU P F, et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11531-11539. [21] ZHANG H, ZU K, LU J, et al.EPSANet:an efficient pyramid squeeze attention block on convolutional neural network[EB/OL].[2021-09-10].https://arxiv.org/abs/2105.14447. [22] TONG K, WU Y, ZHOU F.Recent advances in small object detection based on deep learning:a review[J].Image and Vision Computing, 2020, 97:103910 [23] BENDERSKY E.Depth wise separable convolutions for machine learning[EB/OL].[2021-09-10].https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning. [24] CHU J, GUO Z X, LENG L.Object detection based on multi-layer convolution feature fusion and online hard example mining[J].IEEE Access, 2018, 6:19959-19967. [25] HAN G, SU J, ZHANG C.A method based on multi-convolution layers joint and generative adversarial networks for vehicle detection[J].KSII Transactions on Internet and Information Systems, 2019, 13(4):1795-1811. [26] CAI Z W, VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6154-6162. [27] HINTON G, VINYALS O, DEAN J.Distilling the knowledge in a neural network[EB/OL].[2021-09-10].https://arxiv.org/abs/1503.02531. |