作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (4): 272-280. doi: 10.19678/j.issn.1000-3428.0062943

• 开发研究与工程应用 • 上一篇    下一篇

基于改进Yolov4的车辆目标检测

李松江, 耿兰兰, 王鹏   

  1. 长春理工大学 计算机科学技术学院, 长春 130022
  • 收稿日期:2021-10-13 修回日期:2022-01-07 发布日期:2022-08-08
  • 作者简介:李松江(1984-),男,讲师,主研方向为深度学习、数据挖掘;耿兰兰,硕士研究生;王鹏(通信作者),教授。
  • 基金资助:
    吉林省科技发展计划技术攻关项目(20190302118GX)。

Vehicle Target Detection Based on Improved Yolov4

LI Songjiang, GENG Lanlan, WANG Peng   

  1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2021-10-13 Revised:2022-01-07 Published:2022-08-08

摘要: 交通场景中小目标及遮挡目标的检测对智能交通具有重要意义。目前基于深度学习的方法在检测车辆目标的特征提取方面取得了较好的效果,但是这些方法都缺乏鲁棒性,在交通场景中对小目标及遮挡目标的检测存在漏检、错检等情况。提出一种改进Yolov4的车辆目标检测算法,在主干网络的残差模块中嵌入通道注意力机制ECA-Net,通过对每个通道的重要程度赋予不同的权重来获取跨通道的交互信息,实现通道间的信息关联,加强特征聚合,抑制无效特征。将主干网络输出的浅层特征细节信息与深层特征语义信息相融合,使每层具有当前层语义信息的同时融合丰富的细节信息,增强小目标及遮挡目标的特征。在此基础上,利用深度可分离卷积替换网络特征融合模块的普通卷积,提高网络速度,降低网络计算量。实验结果表明,改进后的Yolov4算法在KITTI和UA-DETRAC数据集上比原Yolov4算法分别提高了1.30和2.16个百分点,检测速度达到55帧/s,相比其他主流模型,能更好地检测小目标及遮挡目标。

关键词: 车辆检测, 小目标, 遮挡目标, 特征融合, 深度可分离卷积

Abstract: The detection of small targets and occlusion objects in traffic scenes is crucial for intelligent transportation. Recently, deep learning-based methods have outperformed other feature extraction techniques for detecting vehicle targets.However, deep learning-based methods have low accuracy in detecting small targets and occluded objects, which lead to a high rate of missed detection.This study proposes an improved Yolov4 vehicle target detection framework to solve these challenges.First, the ECA-Net channel attention mechanism is introduced to the residual module in the backbone.This mechanism assigns different weights according to the importance of each channel to obtain interactive information among channels.In this way, the information association among channels can be realized, which strengthens feature aggregation and suppresses invalid features.Second, the feature information of the shallow and deep layers is merged layer by layer.Each layer has the semantic information of the current layer and incorporates detailed information.This structure is used to enhance the feature information of small targets and occluded targets.Finally, instead of using traditional convolutional operation, the deep separable convolution is dedicated to reducing the training time and computation.The detection results show that the proposed method achieves 1.3 and 2.16 percentage points higher than the baseline Yolov4 on KITTI and UA-DETRAC datasets, respectively, and the detection speed reaches up to 55 frame/s.The proposed method achieves a higher performance than other state-of-the-art techniques for small targets and occluded objects.

Key words: vehicle detection, small targets, occlusion targets, feature fusion, depth separable convolution

中图分类号: