1 |
王治, 韩祥. 视频结构化解析技术在公安警务实战中的建设与应用. 警察技术, 2018, (5): 63- 66.
URL
|
|
WANG Z, HAN X. The construction and application of video structured analysis technology in public security police actual combat. Police Technology, 2018, (5): 63- 66.
URL
|
2 |
许磊, 李志刚, 黎智辉, 等. 人像检验鉴定探讨. 刑事技术, 2020, 45 (2): 111- 116.
URL
|
|
XU L, LI Z G, LI Z H, et al. Cogitation into human image identification. Forensic Science and Technology, 2020, 45 (2): 111- 116.
URL
|
3 |
黎智辉, 谢兰迟, 吕游, 等. 视频侦查中多摄像头下嫌疑目标同一的概率研究. 刑事技术, 2022, 47 (1): 24- 34.
URL
|
|
LI Z H, XIE L C, LÜ Y, et al. Probabilistic approach to identifying same suspected target from multiple cameras in video investigation. Forensic Science and Technology, 2022, 47 (1): 24- 34.
URL
|
4 |
LI D W, CHEN X T, HUANG K Q. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios[C]//Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 111-115.
|
5 |
SUDOWE P, SPITZER H, LEIBE B. Person attribute recognition with a jointly-trained holistic CNN model[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2016: 329-337.
|
6 |
LI D W, CHEN X T, ZHANG Z, et al. Pose guided deep model for pedestrian attribute recognition in surveillance scenarios[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2018: 1-6.
|
7 |
|
8 |
TANG C F, SHENG L, ZHANG Z X, et al. Improving pedestrian attribute recognition with weakly-supervised multi-scale attribute-specific localization[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 4996-5005.
|
9 |
TAN Z C, YANG Y, WAN J, et al. Relation-aware pedestrian attribute recognition with graph convolutional networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 12055- 12062.
doi: 10.1609/aaai.v34i07.6883
|
10 |
JIA J, HUANG H, CHEN X, et al. Rethinking of pedestrian attribute recognition: a reliable evaluation under zero-shot pedestrian identity setting[EB/OL]. [2021-11-22]. https://arxiv.org/abs/2107.03576.
|
11 |
LIU X H, ZHAO H Y, TIAN M Q, et al. HydraPlus-Net: attentive deep features for pedestrian analysis[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 350-359.
|
12 |
|
13 |
WANG J Y, ZHU X T, GONG S G, et al. Attribute recognition by joint recurrent learning of context and correlation[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 531-540.
|
14 |
|
15 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
16 |
|
17 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2021-11-22]. https://arxiv.org/abs/2010.11929.
|
18 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical Vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 9992-10002.
|
19 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
20 |
TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2019: 6105-6114.
|
21 |
|
22 |
TOUVRON H, CORD M, SABLAYROLLES A, et al. Going deeper with image Transformers[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 32-42.
|
23 |
|
24 |
DENG Y B, LUO P, LOY C C, et al. Pedestrian attribute recognition at far distance[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York, USA: ACM Press, 2014: 789-792.
|
25 |
CUBUK E D, ZOPH B, SHLENS J, et al. RandAugment: practical automated data augmentation with a reduced search space[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3008-3017.
|
26 |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9 (11): 72- 84.
|
27 |
DAI X Y, CHEN Y P, YANG J W, et al. Dynamic DETR: end-to-end object detection with dynamic attention[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 2968-2977.
|