1 |
苏展, 张防震, 王瑞, 等. 基于RGB+HSI颜色模型的早期火焰检测算法研究. 河南教育学院学报(自然科学版), 2021, 30(3): 28- 32.
URL
|
|
SU Z, ZHANG F Z, WANG R, et al. Research on early flame detection algorithm based on RGB+HSI color model. Journal of Henan Institute of Education(Natural Science Edition), 2021, 30(3): 28- 32.
URL
|
2 |
曲娜, 王建辉, 陈琦华. 基于YCbCr颜色空间和BP神经网络的火焰图像检测. 沈阳大学学报(自然科学版), 2019, 31(4): 298- 301.
URL
|
|
QU N, WANG J H, CHEN Q H. A flame image detection method based on YCbCr color space and BP neural network. Journal of Shenyang University(Natural Science), 2019, 31(4): 298- 301.
URL
|
3 |
杨述斌, 周敏瑞, 潘伟. 基于烟雾图像动态多帧差分法的火灾识别研究. 自动化与仪表, 2021, 36(7): 47-50, 100
URL
|
|
YANG S B, ZHOU M R, PAN W. Research on fire recognition based on smoke image dynamic multi-frame difference method. Automation & Instrumentation, 2021, 36(7): 47-50, 100
URL
|
4 |
苗续芝, 陈伟, 毕方明, 等. 基于改进FOA-SVM的矿井火灾图像识别. 计算机工程, 2019, 45(4): 267- 274.
URL
|
|
MIAO X Z, CHEN W, BI F M, et al. Mine fire image recognition based on improved FOA-SVM. Computer Engineering, 2019, 45(4): 267- 274.
URL
|
5 |
何欣. 基于深度学习的火焰识别检测研究[D]. 北京: 北京邮电大学, 2021.
|
|
HE X. Research on frame recognition and detection based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2021. (in Chinese)
|
6 |
朱晓妤, 严云洋, 刘以安, 等. 基于深度森林模型的火焰检测. 计算机工程, 2018, 44(7): 264- 270.
URL
|
|
ZHU X Y, YAN Y Y, LIU Y A, et al. Flame detection based on deep forest model. Computer Engineering, 2018, 44(7): 264- 270.
URL
|
7 |
SUN X Q, XIN S J. Flame detection algorithm based on YOLOv4[C]//Proceedings of the 7th International Conference on Intelligent Computing and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 314-317.
|
8 |
赵媛媛, 朱军, 谢亚坤, 等. 改进Yolo-v3的视频图像火焰实时检测算法. 武汉大学学报(信息科学版), 2021, 46(3): 326- 334.
URL
|
|
ZHAO Y Y, ZHU J, XIE Y K, et al. A real-time video flame detection algorithm based on improved Yolo-v3. Geomatics and Information Science of Wuhan University, 2021, 46(3): 326- 334.
URL
|
9 |
王国平, 严云洋, 高尚兵, 等. 基于Fire-YOLO的火焰检测算法. 信息与电脑, 2022, 34(5): 49- 52.
URL
|
|
WANG G P, YAN Y Y, GAO S B, et al. Flame detection algorithm based on Fire-YOLO. China Computer & Communication, 2022, 34(5): 49- 52.
URL
|
10 |
胡燕, 王慧琴, 黄东宇, 等. 基于改进GA-RS的火焰图像特征自适应选择. 计算机工程, 2015, 41(8): 186- 189.
URL
|
|
HU Y, WANG H Q, HUANG D Y, et al. Adaptive selection of flame image features based on improved GA-RS. Computer Engineering, 2015, 41(8): 186- 189.
URL
|
11 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
|
12 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
13 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6154-6162.
|
14 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2999-3007.
|
15 |
DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 6568-6577.
|
16 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
17 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
18 |
|
19 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 936-944.
|
20 |
|
21 |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1571-1580.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904- 1916.
|
23 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
24 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 658-666.
|
25 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13708-13717.
|
26 |
ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[EB/OL]. [2021-10-26]. https://arxiv.org/abs/2005.03572.
|
27 |
HE J B, ERFANI S, MA X J, et al. Alpha-IoU: a family of power intersection over union losses for bounding box regression[EB/OL]. [2021-10-26]. https://arxiv.org/abs/2110.13675.
|