1 |
DUAN H D, ZHAO Y, CHEN K, et al. Revisiting skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 2969-2978.
|
2 |
YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL]. [2023-09-18]. https://arxiv.org/pdf/1801.07455.
|
3 |
LIU Z Y, ZHANG H W, CHEN Z H, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 143-152.
|
4 |
CHEN Y X, ZHANG Z Q, YUAN C F, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 13359-13368.
|
5 |
SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[EB/OL]. [2023-09-18]. https://arxiv.org/pdf/1805.07694.
|
6 |
DU Y, WANG W, WANG L. Hierarchical recurrent neural network for skeleton based action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1110-1118.
|
7 |
|
8 |
SONG Y F, ZHANG Z, SHAN C F, et al. Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 1625-1633.
|
9 |
程思雨, 陈莹. 伪标签细化引导的相机感知无监督行人重识别方法. 光电工程, 2023, 50 (12): 230239.
URL
|
|
CHENG S Y, CHEN Y. Camera-aware unsupervised person re-identification method guided by pseudo-label refinement. Opto-Electronic Engineering, 2023, 50 (12): 230239.
URL
|
10 |
|
11 |
CHEN X, XIE S, HE K M. An empirical study of training self-supervised vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 9640-9649.
|
12 |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9729-9738.
|
13 |
WANG H, CHU H, SIMING F U, et al. Renovate yourself: calibrating feature representation of misclassified pixels for semantic segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2022: 2450-2458.
|
14 |
SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+D: a large scale dataset for 3D human activity analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1010-1019.
|
15 |
LIU J, SHAHROUDY A, PEREZ M, et al. NTU RGB+D 120: a large-scale benchmark for 3D human activity understanding. IEEE Transactions on Pattern Analysis And Machine Intelligence, 2019, 42 (10): 2684- 2701.
|
16 |
WANG J, NIE X H, XIA Y, et al. Cross-view action modeling, learning and recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 2649-2656.
|
17 |
CHENG K, ZHANG Y F, CAO C Q, et al. Decoupling GCN with DropGraph module for skeleton-based action recognition [C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 536-553.
|
18 |
PLIZZARI C, CANNICI M, MATTEUCCI M. Skeleton-based action recognition via spatial and temporal transformer networks. Computer Vision and Image Understanding, 2021, 208, 103219.
doi: 10.1016/J.CVIU.2021.103219
|
19 |
LEE H, PARK U, KIM I-J, et al. Rank-GCN for robust action recognition. IEEE Access, 2022, 10, 91739- 91749.
doi: 10.1109/ACCESS.2022.3202164
|
20 |
LI C, HUANG Q, MAO Y. DD-GCN: directed diffusion graph convolutional network for skeleton-based human action recognition[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2023: 786-791.
|
21 |
CHENG Q, CHENG J, REN Z L, et al. Multi-scale spatial-temporal convolutional neural network for skeleton-based action recognition. Pattern Analysis and Applications, 2023, 26, 1- 13.
doi: 10.1007/s10044-022-01091-2
|
22 |
SONG Y F, ZHANG Z, SHAN C F, et al. Constructing stronger and faster baselines for skeleton-based action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45 (2): 1474- 1488.
doi: 10.48550/arXiv.2106.15125
|
23 |
CHENG K, ZHANG Y F, HE X Y, et al. Skeleton-based action recognition with shift graph convolutional network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 183-192.
|