[1] XIANG X Z, ZHANG Y Q, EL SADDIK A. Pavement crack detection network based on pyramid structure and attention mechanism[J]. IET Image Processing, 2020, 14(8):1580-1586. [2] KANG D H, CHA Y J. Efficient attention-based deep encoder and decoder for automatic crack segmentation[J]. Structural Health Monitoring, 2022, 21(5):2190-2205. [3] YAN K, ZHANG Z H. Automated asphalt highway pavement crack detection based on deformable single shot multi-box detector under a complex environment[J]. IEEE Access, 2021, 9:150925-150938. [4] IBRAGIMOV E, LEE H J, LEE J J, et al. Automated pavement distress detection using region based convolutional neural networks[J]. International Journal of Pavement Engineering, 2022, 23(6):1981-1992. [5] TRAN V P, TRAN T S, LEE H J, et al. One stage detector(RetinaNet)-based crack detection for asphalt pavements considering pavement distresses and surface objects[J]. Journal of Civil Structural Health Monitoring, 2021, 11(1):205-222. [6] LUO H, LI J M, CAI L M, et al. STrans-YOLOX:fusing Swin Transformer and YOLOX for automatic pavement crack detection[J]. Applied Sciences, 2023, 13(3):1999. [7] OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]//Proceedings of the 17th European Signal Processing Conference. Washington D.C., USA:IEEE Press, 2009:622-626. [8] 任亮, 徐志刚, 赵祥模, 等. 基于Prim最小生成树的路面裂缝连接算法[J]. 计算机工程, 2015, 41(1):31-36, 43. REN L, XU Z G, ZHAO X M, et al. Pavement crack connection algorithm based on Prim minimum spanning tree[J]. Computer Engineering, 2015, 41(1):31-36, 43.(in Chinese) [9] SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]//Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems. Washington D.C., USA:IEEE Press, 2013:2039-2044. [10] MEDINA R, LLAMAS J, ZALAMA E, et al. Enhanced automatic detection of road surface cracks by combining 2D/3D image processing techniques[C]//Proceedings of 2014 IEEE International Conference on Image Processing. Washington D.C., USA:IEEE Press, 2014:778-782. [11] ZOU Q, ZHANG Z, LI Q, et al. DeepCrack:learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2018, 28(3):1498-1512. [12] FAN Z, WU Y, LU J, et al. Automatic pavement crack detection based on structured prediction with the convolutional neural network[J].[2023-05-11]. https://arxiv.org/abs/1802.02208. [13] LAU S L H, CHONG E K P, YANG X, et al. Automated pavement crack segmentation using U-Net-based convolutional neural network[J]. IEEE Access, 2020, 8:114892-114899. [14] GHOSH S, SINGH S, MAITY A, et al. CrackWeb:a modified U-Net based segmentation architecture for crack detection[C]//Proceedings of the 3rd International Conference on Advances in Mechanical Engineering and Its Interdisciplinary Areas.[S. l.]:IOP Publishing, 2021:012002. [15] 于海洋, 景鹏, 张文涛, 等. 基于残差与注意力机制的道路裂缝检测U-Net改进模型[J]. 计算机工程, 2023, 49(6):265-273. YU H Y, JING P, ZHANG W T, et al. Improved U-Net model for road crack detection based on residual and attention mechanism[J]. Computer Engineering, 2023, 49(6):265-273.(in Chinese) [16] 张伯树, 张志华, 张洋. 改进的HRNet应用于路面裂缝分割与检测[J]. 测绘通报, 2022(3):83-89. ZHANG B S, ZHANG Z H, ZHANG Y. Improved HRNet applied to segmentation and detection of pavement cracks[J]. Bulletin of Surveying and Mapping, 2022(3):83-89.(in Chinese) [17] CHEN J N, LU Y Y, YU Q H, et al. TransUNet:Transformers make strong encoders for medical image segmentation[EB/OL].[2023-05-11]. https://arxiv.org/abs/2102.04306 [18] YANG Y M, MEHRKANOON S. AA-TransUNet:attention augmented TransUNet for nowcasting tasks[C]//Proceedings of International Joint Conference on Neural Networks. Washington D.C., USA:IEEE Press, 2022:1-8. [19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2017:6000-6010. [20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words:transformers for image recognition at scale[EB/OL].[2023-05-11]. https://arxiv.org/abs/2010.11929. [21] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net:learning where to look for the pancreas[EB/OL].[2023-05-11]. https://arxiv.org/abs/1804.03999. [22] SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12):3434-3445. [23] ZOU Q, CAO Y, LI Q Q, et al. Cracktree:automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3):227-238. [24] CAO H B, GAO Y X, CAI W W, et al. Segmentation detection method for complex road cracks collected by UAV based on HC-UNet++[J]. Drones, 2023, 7(3):189. [25] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [26] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer. Berlin, Germany:Springer, 2015:234-241. [27] LIU Y H, YAO J, LU X H, et al. DeepCrack:a deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338:139-153. |