[1] LI H H, XUE Y, ZHAO H Y, et al. Co-attention networks for aspect-level sentiment analysis[C]//Proceedings of International Conference on Natural Language Processing and Chinese Computing. Berlin, Germany:Springer, 2019:200-209. [2] TRANG P H, THANH N N, DOSAM H. Aspect-level sentiment analysis:a survey of graph convolutional network methods[J]. Information Fusion, 2023, 91:149-172. [3] JIANG L, YU M, ZHOU M, et al. Target-dependent Twitter sentiment classification[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. New York, USA:ACM Press, 2011:151-160. [4] TANG D Y, QIN B, FENG X C, et al. Effective LSTMs for target-dependent sentiment classification[EB/OL].[2023-05-08]. https://arxiv.org/pdf/1512.01100.pdf. [5] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of International Joint Conference on Artificial Intelligence. Washington D.C., USA:IEEE Press, 2017:4068-4074. [6] CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2017:452-461. [7] FAN F F, FENG Y S, ZHAO D Y. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2018:3433-3442. [8] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2023-05-08]. https://arxiv.org/pdf/1609.02907.pdf. [9] 孔博, 韩虎, 陈景景, 等. 基于虚拟依存关系与知识增强的方面级情感分析[J].计算机工程,2023,49(10):53-63. KONG B, HAN H, CHEN J J, et al. Aspect-based sentiment analysis based on virtual dependency and knowledge enhancement[J]. Computer Engineering, 2023,49(10):53-63.(in Chinese) [10] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA:Association for Computational Linguistics, 2019:4568-4578. [11] HUANG B X, CARLEY K. Syntax-aware aspect level sentiment classification with graph attention networks[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA:Association for Computational Linguistics, 2019:5469-5477. [12] TANG H, JI D H, LI C L, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2020:6578-6588. [13] LI R F, CHEN H, FENG F X, et al. Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2021:6319-6329. [14] 王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3):1111-1118. WANG R Y, TAO Z Y, ZHAO R J, et al. Multi-interaction graph convolutional networks for aspect-level sentiment analysis[J]. Journal of Electronics & Information Technology, 2022, 44(3):1111-1118.(in Chinese) [15] ZHANG M, QIAN T Y. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2020:3540-3549. [16] CHEN C H, TENG Z Y, ZHANG Y. Inducing target-specific latent structures for aspect sentiment classification[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2020:5596-5607. [17] 巫浩盛, 缪裕青, 张万桢, 等. 基于距离与图卷积网络的方面级情感分析[J]. 计算机应用研究, 2021, 38(11):3274-3278, 3321. WU H S, MIAO Y Q, ZHANG W Z, et al. Aspect level sentiment analysis based on distance and graph convolution network[J]. Application Research of Computers, 2021, 38(11):3274-3278, 3321.(in Chinese) [18] XU G T, LIU P Y, ZHU Z F, et al. Attention-enhanced graph convolutional networks for aspect-based sentiment classification with multi-head attention[J]. Applied Sciences, 2021, 11(8):3640. [19] ZHOU J, HUANG J X, HU Q V, et al. SK-GCN:modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 205:106292. [20] LIANG B, SU H, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-Based Systems, 2022, 235:107643. [21] ZHANG Z X, MA Z H, CAI S H, et al. Knowledge-enhanced dual-channel GCN for aspect-based sentiment analysis[J]. Mathematics, 2022, 10(22):4273. [22] PENNINGTON J, SOCHER R, MANNING C. GloVe:global vectors for word representation[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2014:1532-1543. [23] ZHENG Y Q, LI X, NIE J Y. Store, share and transfer:learning and updating sentiment knowledge for aspect-based sentiment analysis[J]. Information Sciences:an International Journal, 2023, 635(C):151-168. [24] HU M Q, LIU B. Mining and summarizing customer reviews[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2004:168-177. [25] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4:aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg, USA:Association for Computational Linguistics, 2014:27-35. [26] DONG L, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2014:49-54. |