作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (5): 120-127. doi: 10.19678/j.issn.1000-3428.0067847

• 人工智能与模式识别 • 上一篇    下一篇

基于情感增强与双图卷积网络的方面级情感分析

代巍, 王丰羽, 冀常鹏   

  1. 辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105
  • 收稿日期:2023-06-12 修回日期:2023-08-23 出版日期:2024-05-15 发布日期:2024-05-21
  • 通讯作者: 代巍,E-mail:993343151@qq.com E-mail:993343151@qq.com
  • 基金资助:
    辽宁省教育厅基本科研项目(LJKMZ20220677)。

Aspect Level Sentiment Analysis Based on Sentiment-Enhanced and Dual Graph Convolutional Network

DAI Wei, WANG Fengyu, JI Changpeng   

  1. School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, Liaoning, China
  • Received:2023-06-12 Revised:2023-08-23 Online:2024-05-15 Published:2024-05-21
  • Contact: 代巍,E-mail:993343151@qq.com E-mail:993343151@qq.com

摘要: 方面级情感分析旨在检测给定方面句子的情感极性。现有研究大多在句法依存树上构造图卷积网络,以获取方面词与上下文之间的句法信息。然而这类方法存在提取信息不够丰富、缺乏对句子中情感信息的挖掘等问题。针对上述问题,提出基于情感增强与双图卷积网络的方面级情感分析模型。该模型由双通道图卷积网络组成,旨在挖掘句子中的情感信息、句法信息和语义信息。利用位置信息和情感知识在依存树上构造情感增强依存图,并以此构建情感增强图卷积网络,增强方面词与上下文之间的情感依赖关系,同时挖掘句子中丰富的句法信息特征。构建基于多头注意力机制的图卷积网络,获取句子中的语义特征信息。对双图卷积网络的输出特征进行掩码、平均池化和拼接等操作,并通过情感分类层进行分类。实验结果表明,该模型与经典的图卷积网络模型(ASGCN)相比,在Restaurant、Laptop和Twitter数据集上的准确率和F1值分别提升3.43和5.69、3.13和3.92、3.57和4.02个百分点,具有较好的情感分类性能。

关键词: 方面级情感分析, 情感增强, 依存关系, 图卷积网络, 多头注意力机制

Abstract: Aspect Level Sentiment Analysis (ALSA) is designed to detect the sentiment polarity aspect of a given sentence. Most existing studies have reported the construction of Graph Convolutional Networks (GCN) on syntactic dependency trees to obtain syntactic information from aspect words and their contexts. However, this method has problems such as insufficient information extraction and a lack of sentiment information mining from sentences. To solve these problems, an ALSA model based on a sentiment-enhanced and dual-graph convolutional network is proposed. The model consists of a two-channel GCN that aims to mine the sentiment, syntactic, and semantic information in sentences. Position information and sentiment knowledge are used to construct a sentiment-enhanced dependency graph on syntactic dependency trees, and then a convolutional network of sentiment-enhanced graphs is constructed to enhance the sentiment-dependent relationship between aspect words and context, while simultaneously mining the rich syntactic information features in sentences. Subsequently, a GCN based on a multi-head attention mechanism is constructed to obtain the semantic information features in sentences. The output features of the dual GCN are masked, average-pooled, concatenated, and classified by the sentiment classification layer. The experimental results show that compared with the classical GCN model (ASGCN), the accuracy and F1 value of the Restaurant, Laptop and Twitter datasets improved by 3.43, 5.69, 3.13, 3.92, 3.57, and 4.02 percentage points, respectively. The proposed model has a better sentiment classification performance.

Key words: Aspect Level Sentiment Analysis(ALSA), sentiment-enhanced, dependency relationship, Graph Convolutional Network(GCN), multi-head attention mechanism

中图分类号: