| 1 | 张勇, 刘时银, 王欣.  青藏高原及周边冰川区表碛影响研究进展. 冰川冻土, 2022, 44 (3): 900- 913. | 
																													
																						|  |  ZHANG Y ,  LIU S Y ,  WANG X .  Debris-cover effect in the Tibetan Plateau and surroundings: a review. Journal of Glacology and Ceocryology, 2022, 44 (3): 900- 913. | 
																													
																						| 2 |  CAUVY-FRAUNIÉ S ,  ANDINO P ,  ESPINOSA R , et al.  Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nature Communications, 2016, 7, 12025.  doi: 10.1038/ncomms12025
 | 
																													
																						| 3 | 冀琴, 董军, 刘睿, 等.  1990-2015年喜马拉雅山冰川变化的遥感监测及动因分析. 地理科学, 2020, 40 (3): 486- 496. | 
																													
																						|  |  JI Q ,  DONG J ,  LIU R , et al.  Remote sensing monitoring of glacier changes in the Himalayas and dynamic analysis from 1990 to 2015. Scientia Geographica Sinica, 2020, 40 (3): 486- 496. | 
																													
																						| 4 |  HOLOBÂCǍ I H ,  TIELIDZE L G ,  IVAN K , et al.  Multi-sensor remote sensing to map glacier debris cover in the Greater Caucasus, Georgia. Journal of Glaciology, 2021, 67 (264): 685- 696.  doi: 10.1017/jog.2021.47
 | 
																													
																						| 5 |  SHUKLA A ,  ARORA M K ,  GUPTA R P .  Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 2010, 114 (7): 1378- 1387.  doi: 10.1016/j.rse.2010.01.015
 | 
																													
																						| 6 |  RASTNER P ,  BOLCH T ,  NOTARNICOLA C , et al.  A comparison of pixel- and object-based glacier classification with optical satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (3): 853- 862.  doi: 10.1109/JSTARS.2013.2274668
 | 
																													
																						| 7 |  ROBSON B A ,  BOLCH T ,  MACDONELL S , et al.  Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sensing of Environment, 2020, 250, 112033.  doi: 10.1016/j.rse.2020.112033
 | 
																													
																						| 8 |  MITKARI K V ,  ARORA M K ,  TIWARI R K , et al.  Large-scale debris cover glacier mapping using multisource object-based image analysis approach. Remote Sensing, 2022, 14 (13): 3202.  doi: 10.3390/rs14133202
 | 
																													
																						| 9 |  JAWAK S D ,  WANKHEDE S F ,  LUIS A J , et al.  Effect of image-processing routines on geographic object-based image analysis for mapping glacier surface facies from svalbard and the Himalayas. Remote Sensing, 2022, 14 (17): 4403.  doi: 10.3390/rs14174403
 | 
																													
																						| 10 | 谢树春, 陈志华, 盛斌.  增强细节的RGB-IR多通道特征融合语义分割网络. 计算机工程, 2022, 48 (10): 230-237, 244.  URL
 | 
																													
																						|  |  XIE S C ,  CHEN Z H ,  SHENG B .  An enhanced detail-based semantic segmentation network for RGB-IR multi-channel feature fusion. Computer Engineering, 2022, 48 (10): 230-237, 244.  URL
 | 
																													
																						| 11 | 白俊卿, 韩柏迅, 张丰侠.  基于深度学习的无人机图像语义分割算法研究. 计算机工程, 2023, 49 (4): 233- 239.  URL
 | 
																													
																						|  |  BAI J Q ,  HAN B X ,  ZHANG F X .  Research on deep learning based semantic segmentation algorithm for UAV images. Computer Engineering, 2023, 49 (4): 233- 239.  URL
 | 
																													
																						| 12 | 范吉延, 柯长青, 姚国慧, 等.  基于深度学习的全极化SAR影像冰川边界识别. 遥感学报, 2023, 27 (9): 2098- 2113. | 
																													
																						|  |  FAN J Y ,  KE C C ,  YAO G H , et al.  Deep learning-based glacier boundary recognition on fully polarized SAR imagery. National Remote Sensing Bulletin, 2023, 27 (9): 2098- 2113. | 
																													
																						| 13 | 罗元, 沈吉祥, 李方宇.  动态环境下基于深度学习的视觉SLAM研究综述. 半导体光电, 2024, 45 (1): 1- 10. | 
																													
																						|  |  LUO Y ,  SHEN J X ,  LI F Y .  Review of visual SLAM research based on deep learning in dynamic environments. Semiconductor Optoelectronics, 2024, 45 (1): 1- 10. | 
																													
																						| 14 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 3431-3440. | 
																													
																						| 15 |  | 
																													
																						| 16 |  BADRINARAYANAN V ,  KENDALL A ,  CIPOLLA R .  SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.  doi: 10.1109/TPAMI.2016.2644615
 | 
																													
																						| 17 |  | 
																													
																						| 18 |  NIJHAWAN R ,  DAS J ,  BALASUBRAMANIAN R .  A hybrid CNN+Random forest approach to delineate debris covered glaciers using deep features. Journal of the Indian Society of Remote Sensing, 2018, 46 (6): 981- 989.  doi: 10.1007/s12524-018-0750-x
 | 
																													
																						| 19 |  XIE Z Y ,  HARITASHYA U K ,  ASARI V K , et al.  GlacierNet: a deep-learning approach for debris-covered glacier mapping. IEEE Access, 2020, 8, 83495- 83510.  doi: 10.1109/ACCESS.2020.2991187
 | 
																													
																						| 20 |  MAROCHOV M ,  STOKES C R ,  CARBONNEAU P E .  Image classification of marine-terminating outlet glaciers in Greenland using deep learning methods. The Cryosphere, 2021, 15 (11): 5041- 5059.  doi: 10.5194/tc-15-5041-2021
 | 
																													
																						| 21 |  TIAN S Z ,  DONG Y S ,  FENG R Y , et al.  Mapping mountain glaciers using an improved U-Net model with cSE. International Journal of Digital Earth, 2022, 15 (1): 463- 477.  doi: 10.1080/17538947.2022.2036834
 | 
																													
																						| 22 |  | 
																													
																						| 23 |  LIN R S ,  MEI G ,  XU N X .  Accurate and automatic mapping of complex debris-covered glacier from remote sensing imagery using deep convolutional networks. Geological Journal, 2023, 58 (6): 2254- 2267.  doi: 10.1002/gj.4615
 | 
																													
																						| 24 |  KHAN A A ,  JAMIL A ,  HUSSAIN D , et al.  Deep learning-based framework for monitoring of debris-covered glacier from remotely sensed images. Advances in Space Research, 2023, 71 (7): 2978- 2989.  doi: 10.1016/j.asr.2022.05.060
 | 
																													
																						| 25 |  WU F ,  GOURMELON N ,  SEEHAUS T , et al.  AMD-HookNet for glacier front segmentation. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 3245419. | 
																													
																						| 26 |  ZHU Q ,  GUO H D ,  ZHANG L , et al.  GLA-STDeepLab: SAR enhancing glacier and ice shelf front detection using swin-TransDeepLab with global-local attention. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 3324404. | 
																													
																						| 27 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 801-818. | 
																													
																						| 28 |  | 
																													
																						| 29 |  | 
																													
																						| 30 |  |