1 |
PATRO S G K , MISHRA B K , PANDA S K , et al. Cold start aware hybrid recommender system approach for E-commerce users. Soft Computing, 2023, 27 (4): 2071- 2091.
|
2 |
ALAM M, IANA A, GROTE A, et al. Towards analyzing the bias of news recommender systems using sentiment and stance detection[C]//Proceedings of the Web Conference. New York, USA: ACM Press, 2022: 448-457.
|
3 |
YANG T T , YANG F , MEN J Q . Recommendation content matters! Exploring the impact of the recommendation content on consumer decisions from the means-end chain perspective. International Journal of Information Management, 2023, 68, 102589.
|
4 |
KO H , LEE S , PARK Y , et al. A survey of recommendation systems: recommendation models, techniques, and application fields. Electronics, 2022, 11 (1): 141.
|
5 |
张帅, 高旻, 文俊浩, 等. 基于自监督学习的去流行度偏差推荐方法. 电子学报, 2022, 50 (10): 2361- 2371.
|
|
ZHANG S , GAO M , WEN J H , et al. Self-supervised learning for alleviating popularity bias in recommender systems. Acta Electronica Sinica, 2022, 50 (10): 2361- 2371.
|
6 |
EZALDEEN H , MISRA R , BISOY S K , et al. A hybrid E-learning recommendation integrating adaptive profiling and sentiment analysis. Journal of Web Semantics, 2022, 72, 100700.
|
7 |
CAI D S , QIAN S S , FANG Q , et al. User cold-start recommendation via inductive heterogeneous graph neural network. ACM Transactions on Information Systems, 2023, 41 (3): 1- 27.
|
8 |
ZHANG Y M , WU L F , SHEN Q , et al. Graph learning augmented heterogeneous graph neural network for social recommendation. ACM Transactions on Recommender Systems, 2023, 1 (4): 1- 22.
|
9 |
曹宗胜, 许倩倩, 李朝鹏, 等. 基于对偶四元数的协同知识图谱推荐模型. 计算机学报, 2022, 45 (10): 2221- 2242.
|
|
CAO Z S , XU Q Q , LI Z P , et al. Dual quaternion based collaborative knowledge graph modeling for recommendation. Chinese Journal of Computers, 2022, 45 (10): 2221- 2242.
|
10 |
ZHAO N , LONG Z , WANG J , et al. AGRE: a knowledge graph recommendation algorithm based on multiple paths embeddings RNN encoder. Knowledge-Based Systems, 2023, 259, 110078.
|
11 |
WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2019: 165-174.
|
12 |
HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 639-648.
|
13 |
MA X T , DONG L Y , WANG Y Q , et al. AIRC: attentive implicit relation recommendation incorporating content information for bipartite graphs. Mathematics, 2020, 8 (12): 2132.
|
14 |
刘斌. 基于对比学习的推荐算法研究[D]. 武汉: 华中科技大学, 2023.
|
|
LIU B. Research on recommendation algorithm based on comparative learning[D]. Wuhan: Huazhong University of Science and Technology, 2023. (in Chinese)
|
15 |
LIU Y X , JIN M , PAN S R , et al. Graph self-supervised learning: a survey. IEEE Transactions on Knowledge and Data Engineering, 2022, 35 (6): 5879- 5900.
|
16 |
QIU J Z, CHEN Q B, DONG Y X, et al. GCC: graph contrastive coding for graph neural network pre-training[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2020: 1150-1160.
|
17 |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 9729-9738.
|
18 |
|
19 |
HWANG D , PARK J , KWON S , et al. Self-supervised auxiliary learning with meta-paths for heterogeneous graphs. Advances in Neural Information Processing Systems, 2020, 33, 10294- 10305.
|
20 |
WANG X, LIU N, HAN H, et al. Self-supervised heterogeneous graph neural network with co-contrastive learning[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2021: 1726-1736.
|
21 |
WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 726-735.
|
22 |
YU J, YIN H, XIA X, et al. Are graph augmentations necessary? Simple graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1294-1303.
|
23 |
YU J L , XIA X , CHEN T , et al. XSimGCL: towards extremely simple graph contrastive learning for recommendation. IEEE Transactions on Knowledge and Data Engineering, 2023, 36 (2): 1- 14.
|
24 |
JIANG Y Q, HUANG C, HUANG L H. Adaptive graph contrastive learning for recommendation[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2023: 4252-4261.
|
25 |
|
26 |
|
27 |
KOREN Y , BELL R , VOLINSKY C . Matrix factorization techniques for recommender systems. Computer, 2009, 42 (8): 30- 37.
|
28 |
WANG C Y, YU Y Q, MA W Z, et al. Towards representation alignment and uniformity in collaborative filtering[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 1816-1825.
|