1 |
SCHWAB K . The fourth industrial revolution. Sydney, Australia: Crown Currency, 2017.
|
2 |
李子豪, 张轶, 刘学, 等. 实时系统多路径任务概率时序分析研究综述. 小型微型计算机系统, 2024, 45 (11): 2586- 2593.
URL
|
|
LI Z H , ZHANG Y , LIU X , et al. A survey on probabilistic timing analysis of multi-path tasks in real-time systems. Journal of Chinese Mini-Micro Computer Systems, 2024, 45 (11): 2586- 2593.
URL
|
3 |
丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测. 软件学报, 2020, 31 (3): 726- 747.
doi: 10.13328/j.cnki.jos.005907
|
|
DING X O , YU S J , WANG M X , et al. Anomaly detection on industrial time series based on correlation analysis. Journal of Software, 2020, 31 (3): 726- 747.
doi: 10.13328/j.cnki.jos.005907
|
4 |
LI N P , LEI Y G , YAN T , et al. A Wiener-process-model-based method for remaining useful life prediction considering unit-to-unit variability. IEEE Transactions on Industrial Electronics, 2019, 66 (3): 2092- 2101.
URL
|
5 |
WEI Z B , DONG G Z , ZHANG X N , et al. Noise-immune model identification and state-of-charge estimation for lithium-ion battery using bilinear parameterization. IEEE Transactions on Industrial Electronics, 2021, 68 (1): 312- 323.
doi: 10.1109/TIE.2019.2962429
|
6 |
杨海民, 潘志松, 白玮. 时间序列预测方法综述. 计算机科学, 2019, 46 (1): 21- 28.
doi: 10.11896/j.issn.1002-137X.2019.01.004
|
|
YANG H M , PAN Z S , BAI W . Review of time series prediction methods. Computer Science, 2019, 46 (1): 21- 28.
doi: 10.11896/j.issn.1002-137X.2019.01.004
|
7 |
LI X , ZHANG W , DING Q , et al. Diagnosing rotating machines with weakly supervised data using deep transfer learning. IEEE Transactions on Industrial Informatics, 2020, 16 (3): 1688- 1697.
doi: 10.1109/TII.2019.2927590
|
8 |
QIU S H , CUI X P , PING Z W , et al. Deep learning techniques in intelligent fault diagnosis and prognosis for industrial systems: a review. Sensors, 2023, 23 (3): 1305.
doi: 10.3390/s23031305
|
9 |
LINARDATOS P , PAPASTEFANOPOULOS V , KOTSIANTIS S . Explainable AI: a review of machine learning interpretability methods. Entropy, 2020, 23 (1): 18.
doi: 10.3390/e23010018
|
10 |
LIU T H , WEI H K , LIU S X , et al. Industrial time series forecasting based on improved Gaussian process regression. Soft Computing, 2020, 24 (20): 15853- 15869.
doi: 10.1007/s00500-020-04916-6
|
11 |
RAMASSO E . Investigating computational geometry for failure prognostics. International Journal of Prognostics and Health Management, 2014, 5 (1): 5.
URL
|
12 |
LI N P , LEI Y G , GUO L , et al. Remaining useful life prediction based on a general expression of stochastic process models. IEEE Transactions on Industrial Electronics, 2017, 64 (7): 5709- 5718.
doi: 10.1109/TIE.2017.2677334
|
13 |
LE LOSQ C , VALENTINE A P , MYSEN B O , et al. Structure and properties of alkali aluminosilicate glasses and melts: Insights from deep learning. Geochimica et Cosmochimica Acta, 2021, 314, 27- 54.
doi: 10.1016/j.gca.2021.08.023
|
14 |
WANG B , LEI Y G , LI N P , et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Transactions on Reliability, 2020, 69 (1): 401- 412.
doi: 10.1109/TR.2018.2882682
|
15 |
YANG J , CHAI T Y , LUO C M , et al. Intelligent demand forecasting of smelting process using data-driven and mechanism model. IEEE Transactions on Industrial Electronics, 2019, 66 (12): 9745- 9755.
|
16 |
NGANYU TANYU D , NING J F , FREUDENBERG T , et al. Deep learning methods for partial differential equations and related parameter identification problems. Inverse Problems, 2023, 39 (10): 103001.
URL
|
17 |
HUANG B , WANG J H . Applications of physics-informed neural networks in power systems-a review. IEEE Transactions on Power Systems, 2023, 38 (1): 572- 588.
doi: 10.1109/TPWRS.2022.3162473
|
18 |
RAISSI M , PERDIKARIS P , KARNIADAKIS G E . Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019, 378, 686- 707.
doi: 10.1016/j.jcp.2018.10.045
|
19 |
WANDEL N, WEINMANN M, NEIDLIN M, et al. Spline-PINN: approaching PDEs without data using fast, physics-informed Hermite-spline CNNs[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2022: 8529-8538.
|
20 |
ZHANG H B, LI J X, LIANG S, et al. Towards a generic framework for mechanism-guided deep learning for manufacturing applications[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2023: 5532-5543.
|
21 |
SHEN T, ZHOU T Y, LONG G D, et al. DiSAN: directional self-attention network for RNN/CNN-free language understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 1-9.
|
22 |
XU H Z, WANG Y J, JIAN S L, et al. Beyond outlier detection: outlier interpretation by attention-guided triplet deviation network[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 1328-1339.
|
23 |
WANG Y , SUN Y B , LIU Z W , et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 2019, 38 (5): 1- 12.
|
24 |
WU H X, XU J H, WANG J M, et al. Autoformer: decomposition Transformers with auto-correlation for long-term series forecasting[EB/OL]. [2024-01-14]. https://arxiv.org/abs/2106.13008.
|
25 |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 11106-11115.
|
26 |
韩璐, 霍纬纲, 张永会, 等. 基于多尺度特征融合与双注意力机制的多元时间序列预测. 计算机工程, 2023, 49 (9): 99- 108.
doi: 10.19678/j.issn.1000-3428.0065846
|
|
HAN L , HUO W G , ZHANG Y H , et al. Multivariate time series forecasting based on multi-scale feature fusion and dual-attention mechanism. Computer Engineering, 2023, 49 (9): 99- 108.
doi: 10.19678/j.issn.1000-3428.0065846
|
27 |
NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with Transformers[EB/OL]. [2024-01-14]. https://arxiv.org/abs/2211.14730.
|
28 |
DEMPSTER A , PETITJEAN F , WEBB G I . ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery, 2020, 34 (5): 1454- 1495.
|
29 |
SALINAS D , FLUNKERT V , GASTHAUS J , et al. DeepAR: probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting, 2020, 36 (3): 1181- 1191.
doi: 10.1016/j.ijforecast.2019.07.001
|
30 |
ZENG A L, CHEN M X, ZHANG L, et al. Are Transformers effective for time series forecasting?[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2023: 11121-11128.
|