1 |
ZHENG Q H , ZHAO P H , WANG H J , et al. Fine-grained modulation classification using multi-scale radio transformer with dual-channel representation. IEEE Communications Letters, 2022, 26 (6): 1298- 1302.
doi: 10.1109/LCOMM.2022.3145647
|
2 |
|
3 |
于海洋, 景鹏, 张文涛, 等. 基于残差与注意力机制的道路裂缝检测U-Net改进模型. 计算机工程, 2023, 49 (6): 265- 273.
doi: 10.19678/j.issn.1000-3428.0064952
|
|
YU H Y , JING P , ZHANG W T , et al. Improved U-Net model for road crack detection based on residual and attention mechanism. Computer Engineering, 2023, 49 (6): 265- 273.
doi: 10.19678/j.issn.1000-3428.0064952
|
4 |
殷君君, 代晓康, 张记华, 等. 极化SAR复杂环境车辆目标检测. 空天防御, 2020, 3 (3): 38- 45.
|
|
YIN J J , DAI X K , ZHANG J H , et al. Polarimetric SAR vehicle detection in complex environment. Air & Space Defense, 2020, 3 (3): 38- 45.
|
5 |
张轩铭. 基于视觉的非结构化道路识别综述. 汽车文摘, 2024 (2): 28- 35.
|
|
ZHANG X M . A review on unstructured road recognition based on vision. Automotive Digest, 2024 (2): 28- 35.
|
6 |
ARYA D , MAEDA H , GHOSH S K , et al. RDD2020: an annotated image dataset for automatic road damage detection using deep learning. Data in Brief, 2021, 36, 107133.
doi: 10.1016/j.dib.2021.107133
|
7 |
LEE D H. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks[C]//Proceedings of Workshop on Challenges in Representation Learning. [S. l. ]: ICML, 2013: 896.
|
8 |
刘悦, 张璐, 罗文广, 等. 用于多尺度道路目标检测的优化定位置信度改进算法. 小型微型计算机系统, 2023, 44 (9): 2030- 2037.
|
|
LIU Y , ZHANG L , LUO W G , et al. Improved algorithm of optimized localization confidence for multi-scale road object detection. Journal of Chinese Computer Systems, 2023, 44 (9): 2030- 2037.
|
9 |
TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2021: 1195-1204.
|
10 |
LI X M, YU L Q, CHEN H, et al. Semi-supervised skin lesion segmentation via transformation consistent self-ensembling model[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1808.03887v1.
|
11 |
LIU Y Y, TIAN Y, CHEN Y H, et al. Perturbed and strict mean teachers for semi-supervised semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 4248-4257.
|
12 |
CHEN X K, YUAN Y H, ZENG G, et al. Semi-supervised semantic segmentation with cross pseudo supervision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 2613-2622.
|
13 |
|
14 |
|
15 |
YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 6022-6031.
|
16 |
|
17 |
JEONG J, LEE S, KIM J, et al. Consistency-based semi-supervised learning for object detection[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2019: 10759-10768.
|
18 |
CHEN B H, LI P Y, CHEN X, et al. Dense learning based semi-supervised object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 4805-4814.
|
19 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 9627-9636.
|
20 |
|
21 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2999-3007.
|
22 |
CHEN B B, CHEN W J, YANG S C, et al. Label matching semi-supervised object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 14361-14370.
|
23 |
ZHOU H Y , GE Z , LIU S T , et al. Dense teacher: dense pseudo-labels for semi-supervised object detection. Berlin, Germany: Springer, 2022.
|
24 |
|
25 |
|
26 |
ZHOU Q, YU C H, WANG Z B, et al. Instant-Teaching: an end-to-end semi-supervised object detection framework[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 4081-4090.
|
27 |
XU M D, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with Soft Teacher[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 3040-3049.
|
28 |
ZHANG J, LIN X, ZHANG W, et al. Semi-DETR: semi-supervised object detection with detection Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 23809-23818.
|
29 |
|
30 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
31 |
CARION N , MASSA F , SYNNAEVE G , et al. End-to-end object detection with Transformers. Berlin, Germany: Springer International Publishing, 2020.
|
32 |
|
33 |
|
34 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 618-626.
|
35 |
LI B Y, LIU Y, WANG X G. Gradient harmonized single-stage detector[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 8577-8584.
|