作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 14-24. doi: 10.19678/j.issn.1000-3428.0069534

• AI算力赋能的车载边缘计算 • 上一篇    下一篇

基于半监督学习的非结构化道路缺陷检测算法

朱思远1, 李佳圣2, 邹丹平1,*(), 何迪1, 郁文贤1   

  1. 1. 上海交通大学电子信息与电气工程学院,上海 200240
    2. 上海机电工程研究所,上海 201109
  • 收稿日期:2024-03-11 修回日期:2024-04-01 出版日期:2025-09-15 发布日期:2025-09-26
  • 通讯作者: 邹丹平
  • 基金资助:
    国家自然科学基金重点项目(62231010); 航天科技集团应用创新计划(6230109003)

Unstructured Road Defect Detection Algorithm Based on Semi-Supervised Learning

ZHU Siyuan1, LI Jiasheng2, ZOU Danping1,*(), HE Di1, YU Wenxian1   

  1. 1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Shanghai Electro-mechanical Engineering Institute, Shanghai 201109, China
  • Received:2024-03-11 Revised:2024-04-01 Online:2025-09-15 Published:2025-09-26
  • Contact: ZOU Danping

摘要:

非结构化道路的缺陷目标检测任务对道路交通安全具有重要意义,但检测所需的标注数据集相对有限。为了解决非结构化道路标注数据集缺乏以及现有模型对无标注数据学习能力不足的问题,提出一种MAM(Multi-Augmentation with Memory)半监督目标检测算法。首先,引入缓存机制存储无标注图像和带有伪标注图像的框回归位置信息,避免了后续匹配造成的计算资源浪费。其次,设计混合数据增强策略,将缓存的伪标签图像与无标签图像混合输入学生模型,以增强模型对新数据的泛化能力,并使图像的尺度分布更加均衡。MAM算法不受目标检测模型的限制,并且更好地保持了目标框的一致性,避免了计算一致性损失。实验结果表明,MAM算法相比其他全监督学习和半监督学习算法更具优越性,在自建的非结构化道路缺陷数据集Defect上,在标注比例为10%、20%和30%的场景下,MAM算法的均值平均精度(mAP)相比于Soft Teacher算法分别提升了6.8、11.1和6.0百分点,在自建的非结构化道路坑洼数据集Pothole上,在标注比例为15%和30%的场景下,MAM算法的mAP相比于Soft Teacher算法分别提升了5.8和4.3百分点。

关键词: 非结构化道路, 缺陷目标检测, 半监督学习, 伪标签, 缓存机制, 混合数据增强

Abstract:

Detecting defects on unstructured roads is important for road traffic safety; however, annotated datasets required for detection is limited. This study proposes the Multi-Augmentation with Memory (MAM) semi-supervised object detection algorithm to address the lack of annotated datasets for unstructured roads and the inability of existing models to learn from unlabeled data. First, a cache mechanism is introduced to store the positions of the bounding box regression information for unannotated images and images with pseudo annotations, avoiding computational resource wastage caused by subsequent matching. Second, the study proposes a hybrid data augmentation strategy that mixes the cached pseudo-labeled images with unlabeled images inputted into the student model, to enhance the model′s generalizability to new data and balance the scale distribution of images. The MAM semi-supervised object detection algorithm is not limited by the object detection model and better maintains the consistency of object bounding boxes, thus avoiding the need to compute consistency loss. Experimental results show that the MAM algorithm is superior to other fully supervised and semi-supervised learning algorithms. On a self-built unstructured road defect dataset, called Defect, the MAM algorithm achieves improvements of 6.8, 11.1, and 6.0 percentage points in terms of mean Average Precision (mAP) compared to those of the Soft Teacher algorithm in scenarios with annotation ratios of 10%, 20%, and 30%, respectively. On a self-built unstructured road pothole dataset, called Pothole, the MAM algorithm achieves mAP improvements of 5.8 and 4.3 percentage points compared to those of the Soft Teacher algorithm in scenarios with annotation ratios of 15% and 30%, respectively.

Key words: unstructured road, defect object detection, semi-supervised learning, pseudo label, cache mechanism, hybrid data augmentation