| 1 |
LI J S , PENG J H , LIU S X , et al. Link prediction in directed networks utilizing the role of reciprocal links. IEEE Access, 2020, 8, 28668- 28680.
doi: 10.1109/ACCESS.2020.2972072
|
| 2 |
刘春雨, 陈庆锋, 莫少聪, 等. 基于逻辑规则和图神经网络的知识图谱补全. 计算机工程, 2025, 51 (3): 131- 143.
doi: 10.19678/j.issn.1000-3428.0069129
|
|
LIU C Y , CHEN Q F , MO S C , et al. Knowledge graph completion based on logical rules and graph neural network. Computer Engineering, 2025, 51 (3): 131- 143.
doi: 10.19678/j.issn.1000-3428.0069129
|
| 3 |
吴志强, 解庆, 李琳, 等. 基于多模态融合的图神经网络推荐算法. 计算机工程, 2024, 50 (1): 91- 100.
doi: 10.19678/j.issn.1000-3428.0066929
|
|
WU Z Q , XIE Q , LI L , et al. Graph neural network recommendation algorithm based on multimodal fusion. Computer Engineering, 2024, 50 (1): 91- 100.
doi: 10.19678/j.issn.1000-3428.0066929
|
| 4 |
ASIF N A , SARKER Y , CHAKRABORTTY R K , et al. Graph neural network: a comprehensive review on non-euclidean space. IEEE Access, 2021, 9, 60588- 60606.
doi: 10.1109/ACCESS.2021.3071274
|
| 5 |
ZHOU J , CUI G Q , HU S D , et al. Graph neural networks: a review of methods and applications. AI Open, 2020, 1, 57- 81.
doi: 10.1016/j.aiopen.2021.01.001
|
| 6 |
WU Z H , PAN S R , CHEN F W , et al. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (1): 4- 24.
doi: 10.1109/TNNLS.2020.2978386
|
| 7 |
GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 IEEE International Joint Conference on Neural Networks. Piscataway, USA: IEEE Press, 2005: 729-734.
|
| 8 |
ISLAM K, ARIDHI S, SMAÏL-TABBONE M. A comparative study of similarity-based and GNN-based link prediction approaches[EB/OL]. (2020-08-20)[2024-03-28]. https://arxiv.org/pdf/2008.08879.pdf.
|
| 9 |
JIANG N, NING B, DONG J Y. A survey of GNN-based graph similarity learning[C]//Proceedings of the 8th International Conference on Image, Vision and Computing. Piscataway, USA: IEEE Press, 2023: 650-654.
|
| 10 |
CAI L , LI J D , WANG J , et al. Line graph neural networks for link prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (9): 5103- 5113.
|
| 11 |
|
| 12 |
|
| 13 |
|
| 14 |
MOKHTARI S, SHAKIBIAN H. An efficient link prediction method using community structures[C]//Proceedings of the 12th International Conference on Information and Knowledge Technology. Piscataway, USA: IEEE Press, 2021: 174-177.
|
| 15 |
FANG Z H , TAN S L , WANG Y N , et al. Elementary subgraph features for link prediction with neural networks. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (4): 3822- 3831.
doi: 10.1109/TKDE.2021.3132352
|
| 16 |
NEWMAN M E J . Clustering and preferential attachment in growing networks. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2001, 64 (2 pt 2): 025102.
|
| 17 |
JACCARD P . Etude de la distribution florale dans une portion des alpes et du jura. Bulletin de la Societe Vaudoise des Sciences Naturelles, 1901, 37, 547- 579.
|
| 18 |
XIE Y B , ZHOU T , WANG B H . Scale-free networks without growth. Physica A: Statistical Mechanics and Its Applications, 2008, 387 (7): 1683- 1688.
doi: 10.1016/j.physa.2007.11.005
|
| 19 |
ZHOU T , LV L Y , ZHANG Y C . Predicting missing links via local information. The European Physical Journal B, 2009, 71 (4): 623- 630.
doi: 10.1140/epjb/e2009-00335-8
|
| 20 |
ADAMIC L A , ADAR E . Friends and neighbors on the web. Social Networks, 2003, 25 (3): 211- 230.
doi: 10.1016/S0378-8733(03)00009-1
|
| 21 |
KATZ L . A new status index derived from sociometric analysis. Psychometrika, 1953, 18 (1): 39- 43.
doi: 10.1007/BF02289026
|
| 22 |
JEH G, WIDOM J. SimRank: a measure of structural-context similarity[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2002: 538-543.
|
| 23 |
BRIN S , PAGE L . Reprint of: the anatomy of a large-scale hypertextual Web search engine. Computer Networks, 2012, 56 (18): 3825- 3833.
doi: 10.1016/j.comnet.2012.10.007
|
| 24 |
ZHANG M H, CHEN Y X. Weisfeiler-Lehman neural machine for link prediction[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2017: 575-583.
|
| 25 |
ZHANG M H, CHEN Y X. Link prediction based on graph neural networks[C]//Proceedings of International Conference on the Neural Information Processing Systems. New York, USA: ACM, 2018: 5165-5175.
|
| 26 |
ZHANG M H, CUI Z C, NEUMANN M, et al. An end-to-end deep learning architecture for graph classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: ACM, 2018: 4438-4445.
|
| 27 |
LOUIS P, JACOB S A, SALEHI-ABARI A. Sampling enclosing subgraphs for link prediction[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2022: 4269-4273.
|
| 28 |
GAO Y , FENG Y , JI S , et al. HGNN+: general hypergraph neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (3): 3181- 3199.
doi: 10.1109/TPAMI.2022.3182052
|
| 29 |
GAO Y , ZHANG Z , LIN H , et al. Hypergraph learning: methods and practices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (5): 2548- 2566.
|
| 30 |
WU H R , NG M K . Hypergraph convolution on nodes-hyperedges network for semi-supervised node classification. ACM Transactions on Knowledge Discovery from Data, 2022, 16 (4): 1- 19.
|
| 31 |
GARASUIE M M, SHABANKHAH M, KAMANDI A. Improving hypergraph attention and hypergraph convolution networks[C]//Proceedings of the 11th International Conference on Information and Knowledge Technology. Piscataway, USA: IEEE Press, 2020: 67-72.
|
| 32 |
WATTS D J , STROGATZ S H . Collective dynamics of "small-world" networks. Nature, 1998, 393 (6684): 440- 442.
doi: 10.1038/30918
|
| 33 |
ROSSI R A, AHMED N K. The network data repository with interactive graph analytics and visualization[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. New York, USA: ACM, 2015: 4292-4293.
|
| 34 |
MERING C , KRAUSE R , SNEL B , et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 2002, 417 (6887): 399- 403.
doi: 10.1038/nature750
|