1 |
沙浩, 刘越, 王涌天, 等. 基于二维图像和三维几何约束神经网络的单目室内深度估计方法. 光学学报, 2022, 42(19): 47- 57.
|
|
SHA H, LIU Y, WANG Y T, et al. Monocular indoor depth estimation method based on neural network with constraints on two-dimensional images and three-dimensional geometrically. Acta Optica Sinica, 2022, 42(19): 47- 57.
|
2 |
胡春生, 闫小鹏, 魏红星, 等. 基于立体视觉的目标检测与轨迹预测研究综述. 计算机工程与应用, 2022, 58(3): 50- 65.
|
|
HU C S, YAN X P, WEI H X, et al. Survey of target detection and trajectory prediction based on stereo vision. Computer Engineering and Applications, 2022, 58(3): 50- 65.
|
3 |
马建红, 王稀瑶, 陈永霞, 等. 自动驾驶中图像与点云融合方法研究综述. 郑州大学学报(理学版), 2022, 54(6): 24- 33.
|
|
MA J H, WANG X Y, CHEN Y X, et al. A review of research on image and point cloud fusion methods in autonomous driving. Journal of Zhengzhou University (Science Edition), 2022, 54(6): 24- 33.
|
4 |
张磊, 徐孝彬, 曹晨飞, 等. 基于动态特征剔除的图像与点云融合的机器人位姿估计方法. 中国激光, 2022, 49(6): 58- 69.
|
|
ZHANG L, XU X B, CAO C F, et al. Robot pose estimation method based on image and point cloud fusion with dynamic feature elimination. China Laser, 2022, 49(6): 58- 69.
|
5 |
LIU H B, JIA J Y, GONG N Z. Pointguard: provably robust 3D point cloud classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 6186-6195.
|
6 |
兰红, 陈浩, 张蒲芬. 集图卷积和三维方向卷积的点云分类分割模型. 计算机工程与应用, 2023, 59(8): 182- 191.
|
|
LAN H, CHEN H, ZHANG P F. Point cloud classification and segmentation model based on graph convolution and 3D direction convolution. Computer Engineering and Applications, 2023, 59(8): 182- 191.
|
7 |
景庄伟, 管海燕, 臧玉府, 等. 基于深度学习的点云语义分割研究综述. 计算机科学与探索, 2021, 15(1): 1- 26.
|
|
JING Z W, GUAN H Y, ZANG Y F, et al. A survey of on semantic segmentation of point cloud based on deep learning. Computer Science and Exploration, 2021, 15(1): 1- 26.
|
8 |
QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 652-660.
|
9 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2023-11-01]. https://arxiv.org/pdf/1706.02413.
|
10 |
YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: point cloud auto-encoder via deep grid deformation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 206-215.
|
11 |
YUAN W T, KHOT T, HELD D, et al. PCN: point completion network[C]//Proceedings of 2018 International Conference on 3D Vision (3DV). Washington D. C., USA: IEEE Press, 2018: 728-737.
|
12 |
WANG Y, SUN Y B, LIU Z Q, et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 2019, 38(5): 1- 12.
URL
|
13 |
HUANG Z, YU Y, XU J, et al. PF-Net: point fractal network for 3D point cloud completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 7662-7670.
|
14 |
XIANG P, WEN X, LIU Y S, et al. SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 5499-5509.
|
15 |
XIANG P, WEN X, LIU Y S, et al. Snowflake point deconvolution for point cloud completion and generation with skip-transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 6320- 6338.
URL
|
16 |
WEN X, XIANG P, HAN Z, et al. PMP-Net: point cloud completion by learning multi-step point moving paths[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 7443-7452.
|
17 |
WEN X, XIANG P, HAN Z, et al. PMP-Net++: point cloud completion by transformer-enhanced multi-step point moving paths. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 852- 867.
URL
|
18 |
ZHAO H, JIANG L, JIA J, et al. Point transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 16259-16268.
|
19 |
PAN L, CHEN X Y, CAI Z Z, et al. Variational relational point completion network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8524-8533.
|
20 |
PAN L, CHEW C M, LEE G H. PointAtrousGraph: deep hierarchical encoder-decoder with point atrous convolution for unorganized 3D points[EB/OL]. [2023-11-01]. https://arxiv.org/abs/1907.09798v2.
|
21 |
TCHAPMI L P, KOSARAJU V, REZATOFIGHI H, et al. TopNet: structural point cloud decoder[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 383-392.
|
22 |
WANG X G, ANG JR M H, LEE G H. Cascaded refinement network for point cloud completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 790-799.
|
23 |
PAN L. ECG: edge-aware point cloud completion with graph convolution. IEEE Robotics and Automation Letters, 2020, 5(3): 4392- 4398.
URL
|
24 |
LIU M H, SHENG L, YANG S, et al. Morphing and sampling network for dense point cloud completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2020: 11596-11603.
|
25 |
XIE H Z, YAO H X, ZHOU S C, et al. GRNet: gridding residual network for dense point cloud completion[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 365-381.
|
26 |
YU X M, RAO Y M, WANG Z Y, et al. PoinTr: diverse point cloud completion with adaptive geometry-aware transformers[C]// Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 1-9.
|