1 |
WANG B S , ZHENG J B , PHILIP CHEN C L . A survey on masked facial detection methods and datasets for fighting against COVID-19. IEEE Transactions on Artificial Intelligence, 2021, 3 (3): 323- 343.
|
2 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2014: 580-587.
|
3 |
HE K , ZHANG X , REN S , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
4 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2015: 1440-1448.
|
5 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
6 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2961-2969.
|
7 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 779-788.
|
8 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 7263-7271.
|
9 |
|
10 |
|
11 |
|
12 |
LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-12-05]. https://arxiv.org/abs/2209.02976.
|
13 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 7464-7475.
|
14 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2980-2988.
|
15 |
|
16 |
JIANG X B , GAO T H , ZHU Z C , et al. Real-time face mask detection method based on YOLOv3. Electronics, 2021, 10 (7): 837.
doi: 10.3390/electronics10070837
|
17 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
18 |
YU J M , ZHANG W . Face mask wearing detection algorithm based on improved YOLO-v4. Sensors, 2021, 21 (9): 3263.
doi: 10.3390/s21093263
|
19 |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2020: 390-391.
|
20 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8759-8768.
|
21 |
ZHANG J , HAN F T , CHUN Y T , et al. A novel detection framework about conditions of wearing face mask for helping control the spread of COVID-19. IEEE Access, 2021, 9, 42975- 42984.
doi: 10.1109/ACCESS.2021.3066538
|
22 |
杨国亮, 余帅英, 杨浩. 改进YOLOV5s的多尺度融合口罩佩戴检测方法. 计算机工程与应用, 2023, 59 (14): 184- 191.
|
|
YANG G L , YU S Y , YANG H . Multi-scale fusion mask wearing detection method based on improved YOLOV5s. Computer Engineering and Applications, 2023, 59 (14): 184- 191.
|
23 |
黄家興, 南新元, 张文龙, 等. 基于改进YOLOv5的轻量化口罩检测算法研究. 计算机仿真, 2023, 40 (5): 541- 547.
|
|
HUANG J X , NAN X Y , ZHANG W L , et al. Research on lightweight mask detection algorithm based on improved YOLOv5. Computer Simulation, 2023, 40 (5): 541- 547.
|
24 |
|
25 |
RAZAVI M , ALIKHANI H , JANFAZA V , et al. An automatic system to monitor the physical distance and face mask wearing of construction workers in COVID-19 pandemic. SN Computer Science, 2021, 3 (1): 27.
|
26 |
|
27 |
SANDLER M, HOWARD A G, ZHU M L, et al. Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation[EB/OL]. [2023-12-05]. https://arxiv.org/abs/1801.04381.
|
28 |
李梦茹, 肖秦琨, 韩泽佳. 基于改进YOLOv5的人脸口罩佩戴检测. 计算机工程与设计, 2023, 44 (9): 2811- 2821.
|
|
LI M R , XIAO Q K , HAN Z J . Face mask wearing detection based on improved YOLOv5 algorithm. Computer Engineering and Design, 2023, 44 (9): 2811- 2821.
|
29 |
段高峰, 单剑锋, 刘哲. 复杂环境下轻量化口罩佩戴检测算法研究. 电子技术应用, 2023, 49 (8): 108- 113.
|
|
DUAN G F , SHAN J F , LIU Z . Research on lightweight detection algorithm of wearing mask in complex environment. Application of Electronic Technique, 2023, 49 (8): 108- 113.
|
30 |
春雨童, 韩飞腾, 何明珂. 新冠肺炎疫情背景下聚集性传染风险智能监测模型. 计算机工程, 2022, 48 (8): 45-52, 61.
URL
|
|
CHUN Y T , HAN F T , HE M K . Intelligent monitoring model for aggregated infection risk against the background of COVID-19 epidemic. Computer Engineering, 2022, 48 (8): 45-52, 61.
URL
|
31 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate Attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 13713-13722.
|
32 |
|
33 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 1-9.
|
34 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 10781-10790.
|
35 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 2117-2125.
|
36 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8759-8768.
|
37 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 658-666.
|
38 |
ZHENG Z H , WANG P , LIU W , et al. Distance-IoU Loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 12993- 13000.
URL
|
39 |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 5561-5569.
|
40 |
ROY B , NANDY S , GHOSH D , et al. MOXA: a deep learning based unmanned approach for real-time monitoring of people wearing medical masks. Transactions of the Indian National Academy of Engineering, 2020, 5 (3): 509- 518.
URL
|
41 |
ZHENG Q H , TIAN X Y , YU Z G , et al. DL-PR: generalized automatic modulation classification method based on deep learning with priori regularization. Engineering Applications of Artificial Intelligence, 2023, 122, 106082.
URL
|
42 |
|
43 |
|
44 |
QI Y L, HE Y T, QI X M, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 6070-6079.
|
45 |
OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D.C., USA: IEEE Press, 2023: 1-5.
|