1 |
刘剑, 苏璞睿, 杨珉, 等. 软件与网络安全研究综述. 软件学报, 2018, 29(1): 42- 68.
|
|
LIU J, SU P R, YANG M, et al. Survey of software and cyber security resesrch. Journal of Software, 2018, 29(1): 42- 68.
|
2 |
王小群, 丁丽, 严寒冰, 等. 2020年我国互联网网络安全态势综述. 保密科学技术, 2021,(5): 3- 10.
|
|
WANG X Q, DING L, YAN H B, et al. Summary of China's Internet network security situation in 2020. Secrecy Science and Technology, 2021,(5): 3- 10.
|
3 |
刘奇旭, 王君楠, 尹捷, 等. 对抗机器学习在网络入侵检测领域的应用. 通信学报, 2021, 42(11): 1- 12.
|
|
LIU Q X, WANG J N, YIN J, et al. Application of adversarial machine learning in network intrusion detection. Journal on Communications, 2021, 42(11): 1- 12.
|
4 |
张蕾, 崔勇, 刘静, 等. 机器学习在网络空间安全研究中的应用. 计算机学报, 2018, 41(9): 1943- 1975.
|
|
ZHANG L, CUI Y, LIU J, et al. Application of machine learning in cyberspace security research. Chinese Journal of Computers, 2018, 41(9): 1943- 1975.
|
5 |
张玲, 白中英, 罗守山, 等. 基于粗糙集和人工免疫的集成入侵检测模型. 通信学报, 2013, 34(9): 166- 176.
|
|
ZHANG L, BAI Z Y, LUO S S, et al. Integrated intrusion detection model based on rough set and artificial immune. Journal on Communications, 2013, 34(9): 166- 176.
|
6 |
李洋, 方滨兴, 郭莉, 等. 基于主动学习和TCM-KNN方法的有指导入侵检测技术. 计算机学报, 2007, 30(8): 1464- 1473.
|
|
LI Y, FANG B X, GUO L, et al. Supervised intrusion detection based on active learning and TCM-KNN algorithm. Chinese Journal of Computers, 2007, 30(8): 1464- 1473.
|
7 |
周杰英, 贺鹏飞, 邱荣发, 等. 融合随机森林和梯度提升树的入侵检测研究. 软件学报, 2021, 32(10): 3254- 3265.
|
|
ZHOU J Y, HE P F, QIU R F, et al. Research on intrusion detection based on random forest and gradient boosting tree. Journal of Software, 2021, 32(10): 3254- 3265.
|
8 |
GAO X W, SHAN C, HU C Z, et al. An adaptive ensemble machine learning model for intrusion detection. IEEE Access, 2019, 7, 82512- 82521.
doi: 10.1109/ACCESS.2019.2923640
|
9 |
HU W M, HU W, MAYBANK S. AdaBoost-based algorithm for network intrusion detection. IEEE Transactions on Systems, Man, and Cybernetics, 2008, 38(2): 577- 583.
doi: 10.1109/TSMCB.2007.914695
|
10 |
MABU S, CHEN C, LU N N, et al. An intrusion-detection model based on fuzzy class-association-rule mining using genetic network programming. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41(1): 130- 139.
doi: 10.1109/TSMCC.2010.2050685
|
11 |
KUMAR R, ZHANG X KHAN R U, et al. Malicious code detection based on image processing using deep learning[C]//Proceedings of 2018 International Conference on Computing and Artificial Intelligence. New York, USA : ACM Press, 2018: 81-85.
|
12 |
麻文刚, 张亚东, 郭进. 基于LSTM与改进残差网络优化的异常流量检测方法. 通信学报, 2021, 42(5): 23- 40.
|
|
MA W G, ZHANG Y D, GUO J. Abnormal traffic detection method based on LSTM and improved residual neural network optimization. Journal on Communications, 2021, 42(5): 23- 40.
|
13 |
尹晟霖, 张兴兰, 左利宇. 双重路由深层胶囊网络的入侵检测系统. 计算机研究与发展, 2022, 59(2): 418- 429.
|
|
YIN S L, ZHANG X L, ZUO L Y. Intrusion detection system for dual route deep capsule network. Journal of Computer Research and Development, 2022, 59(2): 418- 429.
|
14 |
刘金硕, 詹岱依, 邓娟, 等. 基于深度神经网络和联邦学习的网络入侵检测. 计算机工程, 2023, 49(1): 15-21, 30.
URL
|
|
LIU J S, ZHAN D Y, DENG J, et al. Network intrusion detection based on deep neural network and federated learning. Computer Engineering, 2023, 49(1): 15-21, 30.
URL
|
15 |
杨秀璋, 彭国军, 罗元, 等. OMRDetector: 一种基于深度学习的混淆恶意请求检测方法. 计算机学报, 2022, 45(10): 2167- 2189.
|
|
YANG X Z, PENG G J, LUO Y, et al. OMRDetector: a method for detecting obfuscated malicious requests based on deep learning. Chinese Journal of Computers, 2022, 45(10): 2167- 2189.
|
16 |
LOTFOLLAHI M, JAFARI SIAVOSHANI M. Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Computing, 2020, 24(3): 1999- 2012.
doi: 10.1007/s00500-019-04030-2
|
17 |
ZAVRAK S, ISKEFIYELI M. Anomaly-based intrusion detection from network flow features using variational autoencoder. IEEE Access, 2020, 8, 108346- 108358.
doi: 10.1109/ACCESS.2020.3001350
|
18 |
来杰, 王晓丹, 向前, 等. 自编码器及其应用综述. 通信学报, 2021, 42(9): 218- 230.
|
|
LAI J, WANG X D, XIANG Q, et al. Review on autoencoder and its application. Journal on Communications, 2021, 42(9): 218- 230.
|
19 |
WANG W J, DU X H, SHAN D B, et al. Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine. IEEE Transactions on Cloud Computing, 2022, 10(3): 1634- 1646.
doi: 10.1109/TCC.2020.3001017
|
20 |
ZHAO R J, YIN J, XUE Z, et al. An efficient intrusion detection method based on dynamic autoencoder. IEEE Wireless Communications Letters, 2021, 10(8): 1707- 1711.
doi: 10.1109/LWC.2021.3077946
|
21 |
YAN B H, HAN G D. Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system. IEEE Access, 2018, 6, 41238- 41248.
doi: 10.1109/ACCESS.2018.2858277
|
22 |
ZHANG B A, YU Y H, LI J. Network intrusion detection based on stacked sparse autoencoder and binary tree ensemble method[C]//Proceedings of IEEE International Conference on Communications Workshops. Washington D. C., USA: IEEE Press, 2018: 1-6.
|
23 |
AL-QATF M, YU L S, AL-HABIB M, et al. Deep learning approach combining sparse autoencoder with SVM for network intrusion detection. IEEE Access, 2018, 6, 52843- 52856.
doi: 10.1109/ACCESS.2018.2869577
|
24 |
BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2007: 153-160.
|
25 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
26 |
SHARAFALDIN I, LASHKARI A H. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proceedings of the 4th International Conference on Information Systems Security and Privacy. Washington D. C., USA: IEEE Press, 2021: 267-278.
|