作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2018, Vol. 44 ›› Issue (8): 218-223. doi: 10.19678/j.issn.1000-3428.0047107

• 人工智能及识别技术 • 上一篇    下一篇

基于卷积神经网络的晶圆缺陷检测与分类算法

邡鑫,史峥   

  1. 浙江大学 超大规模集成电路设计研究所,杭州 310027
  • 收稿日期:2017-05-08 出版日期:2018-08-15 发布日期:2018-08-15
  • 作者简介:邡鑫(1994—),男,硕士,主研方向为晶圆缺陷检测、深度学习;史峥,副教授、博士。
  • 基金资助:

    国家自然科学基金(61474098,61674129)。

Wafer Defect Detection and Classification Algorithms Based on Convolutional Neural Network

FANG Xin,SHI Zheng   

  1. Institute of VLSI Design,Zhejiang University,Hangzhou 310027,China
  • Received:2017-05-08 Online:2018-08-15 Published:2018-08-15

摘要:

针对晶圆检验时扫描电镜图像的缺陷检测和缺陷分类问题,利用ZFNet卷积神经网络对晶圆缺陷进行分类,并在此基础上,设计基于块的卷积神经网络缺陷检测算法。为提高准确率和加快速度,通过改进Faster RCNN分类器,提出另一种检测算法。实验结果表明,2种检测算法都能通过学习已标记位置和类型的缺陷数据,从扫描电镜图像中准确检测并分类多种类型缺陷。

关键词: 晶圆检验, 缺陷检测, 缺陷分类, 卷积神经网络, patch-based CNN分类器, Faster RCNN分类器

Abstract:

For defect detection and defect classification problems of Scanning Electron Microscope (SEM) images during wafer inspection,this paper applies a Convolutional Neural Network(CNN) called ZFNet to classify wafer defects.On this basis,a patch-based CNN defect detection algorithm is proposed.For better accuracy and higher speed,another detection algorithm is proposed by modifying Faster RCNN classifier.Experimental results show that,by learning from the defects data marked with locations and types,the two detection algorithms can both detect and classify defects of multiple types on SEM images.

Key words: wafer inspection, defect detection, defect classification, Convolutional Neural Network(CNN), patch-based CNN classifier, Faster RCNN classifier

中图分类号: