[1]CHU S,NARAYANAN S,KUO C C J.Environmental sound recognition using MP-based features[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Washington D.C.,USA:IEEE Press,2008:1-4.
[2]CANNON W B.The James-Lange theory of emotions:a critical examination and an alternative theory[J].The American Journal of Psychology,1987,100(3/4):567-586.
[3]陆文娟.基于脑电信号的情感识别研究[D].南京:南京邮电大学,2017.
[4]BAJAJ V,PACHORI R B.Detection of human emotions using features based on the multiwavelet transform of EEG signals[M].Berlin,Germany:Springer,2015:215-240.
[5]ARNAU-GONZLEZ P,AREVALILLO-HERREZ M,RAMZAN N.Fusing highly dimensional energy and connectivity features to identify affective states from EEG signals[J].Neurocomputing,2017,244:81-89.
[6]LIN Y P,WANG C H,JUNG T P.EEG-based emotion recognition in music listening[J].IEEE Transactions on Biomedical Engineering,2010,57(7):1798-1806.
[7]KARLSSON L,LOUTFI A.Sleep stage classification using unsupervised feature learning[J].Advances in Artificial Neural Systems,2012.
[8]LI K,LI X,ZHANG Y.Affective state recognition from EEG with deep belief networks[C]//Proceedings of IEEE International Conference on Bioinformatics and Biomedicine.Washington D.C.,USA:IEEE Press,2013:305-310.
[9]吴琛,周瑞忠.Hilbert-Huang变换在提取地震信号动力特性中的应用[J].地震工程与工程振动,2006,26(5):41-46.
[10]PETRANTONAKIS P C,HADJILEONTIADIS L J.A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition[J].IEEE Transactions on Information Technology in Biomedicine,2011,15(5):737-46.
[11]XU Y L,CHEN J.Characterizing nonstationary wind speed using empirical mode decomposition[J].Journal of Structural Engineering,2004,130(6):912-920.
[12]PENG Z K,TSE P W,CHU F L.An improved Hilbert-Huang transform and its application in vibration signal analysis[J].Journal of Sound and Vibration,2005,286(1/2):187-205.
[13]赵双乐.浅析小波变换理论及其应用[J].科技风,2014(15):106-106.
[14]石瑞敏,杨兆建.基于改进EMD的多绳摩擦提升机载荷信息特征提取[J].煤炭学报,2014,39(4):782-788.
[15]BADSHAH A M,AHMAD J,RAHIM N,et al.Speech emotion recognition from spectrograms with deep convolutional neural network[C]//Proceedings of International Conference on Platform Technology and Service.Washington D.C.,USA:IEEE Press,2017:1-5.
[16]BENGIO Y,SIMARD P,FRASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,1994,5(2):157-166.
[17]李幼军,黄佳进,王海渊.基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究[J].通信学报,2017,38(12):109-120.
[18]CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
[19]NIE D,WANG X W,SHI L C,et al.EEG-based emotion recognition during watching movies[C]//Proceedings of International IEEE/EMBS Conference on Neural Engineering.Washington D.C.,USA:IEEE Press,2011:667-670.
[20]PAUL S,MAZUMDER A,GHOSH P,et al.EEG based emotion recognition system using MFDFA as feature extractor[C]//Proceedings of International Conference on Robotics,Automation,Control and Embedded Systems.Washington D.C.,USA:IEEE Press,2015:1-5.
[21]ZHENG W L,LU B L.Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J].IEEE Transactions on Autonomous Mental Development,2015,7(3):162-175.
[22]LIU S,MENG J,ZHANG D,et al.Emotion recognition based on EEG changes in movie viewing[C]//Proceedings of International IEEE/EMBS Conference on Neural Engineering.Washington D.C.,USA:IEEE Press,2015:1036-1039.
[23]AFTANAS L I,REVA N V,VARLAMOV A A,et al.Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans:temporal and topographic characteristics[J].Neuroscience and Behavioral Physiology,2004,34(8):859-67.
[24]JENKE R,PEER A,BUSS M.Feature extraction and selection for emotion recognition from EEG[J].IEEE Transactions on Affective Computing,2017,5(3):327-339. |