[1] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. [2] SILVER D,HUANG A,MADDISON C J,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489. [3] LECUN Y,BOSER B,DENKER J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,2014,1(4):541-551. [4] FUKUSHIMA K.Neocognitron:a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J].Biological Cybernetics,1980,36(4):193-202. [5] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [6] LAWRENCE S,GILES C L,TSOI A C,et al.Face recognition:a convolutional neural-network approach[J].IEEE Transactions on Neural Networks,1997,8(1):98-113. [7] NEBAUER C.Evaluation of convolutional neural networks for visual recognition[J].IEEE Transactions on Neural Networks,1998,9(4):685-696. [8] 余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. [9] 李勇,林小竹,蒋梦莹.基于跨连接LeNet-5网络的面部表情识别[J].自动化学报,2018,44(1):176-182. [10] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates Inc.,2012:1097-1105. [11] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-12-20].https://arxiv.org/pdf/1409.1556.pdf. [12] SZEGEDY C,LIU Wei,JIA Yangqing,et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. [13] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:2818-2826. [14] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [15] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Identity mappings in deep residual networks[C]//Proceedings of Conference on Computer Vision.Berlin,Germany:Springer,2016:630-645. [16] HE Kaiming,SUN Jian.Convolutional neural networks at constrained time cost[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:5353-5360. [17] LUO Wenjie,LI Yujia,URTASUN R,et al.Understanding the effective receptive field in deep convolutional neural networks[C]//Proceedings of International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates Inc.,2016:4898-4906. [18] HE Kaiming,GIRSHICK R,DOLLÁR P.Rethinking ImageNet pre-training[EB/OL].[2018-12-20].https://arxiv.org/abs/1811.08883v1. [19] HUBEL D H,WIESEL T N.Receptive fields,binocular interaction and functional architecture in the cat's visual cortex[J].The Journal of Physiology,1962,160(1):106-154. [20] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates Inc.,2014:2672-2680. [21] WU Jiajun,ZHANG Chengkai,XUE Tianfan,et al.Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[EB/OL].[2018-12-20].https://arxiv.org/abs/1610.07584. [22] ODENA A,OLAH C,SHLENS J.Conditional image synthesis with auxiliary classifier GANs[EB/OL].[2018-12-20].https://arxiv.org/pdf/1610.09585.pdf. |