[1] Project Euphonia:helping everyone be better undestood[EB/OL].[2019-09-01].https://www.zgwdy.cn/21043133610.html. [2] UNDERWOOD B,BIRDSALL J,KAY E.The use of a mobile app to motivate evidence-based oral hygiene behaviour[EB/OL].[2019-09-01].https://www.nature.com/articles/sj.bdj.2015.660. [3] KE Dongxiang,PAN Limin,LUO Senlin,et al.Android malicious behavior recognition and classification method based on random forest algorithm[J].Journal of Zhejiang University(Engineering Science Edition),2019,53(10):2013-2023.(in Chinese)柯懂湘,潘丽敏,罗森林,等.基于随机森林算法的Android恶意行为识别与分类方法[J].浙江大学学报(工学版),2019,53(10):2013-2023. [4] ZHOU Yajin,JIANG Xuxian.Dissecting Android malware:characterization and evolution[C]//Proceedings of 2012 IEEE Symposium on Security and Privacy.Washington D.C.,USA:IEEE Press,2012:95-109. [5] VINOD P,ZEMMARI A,CONTI M.A machine learning based approach to detect malicious Android apps using discriminant system calls[J].Future Generation Computer Systems,2018,94(11):333-350. [6] FEIZOLLAH A,ANUAR N B,SALLEH R,et al.A review on feature selection in mobile malware detection[J].Digital Investigation,2015,13(6):22-37. [7] SATO R,CHIBA D,GOTO S.Detecting Android malware by analyzing manifest files[EB/OL].[2019-09-01].https://www.researchgate.net/publication/272778915_Detecting_Android_Malware_by_Analyzing_Manifest_Files. [8] VIDAL J M,MONGE M A S,VILLALBA L J G.A novel pattern recognition system for detecting Android malware by analyzing suspicious boot sequences[J].Knowledge-Based Systems,2018,150(6):198-217. [9] DINI G,MARTINELLI F,MATTEUCCI I,et al.Risk analysis of Android applications:a user-centric solution[J].Future Generation Computer Systems,2018,80(3):505-518. [10] WANG Wei,LI Yuanyuan,WANG Xing,et al.Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers[J].Future Generation Computer Systems,2018,78(1):987-994. [11] YERIMA S Y,MCWILLIAMS G,SEZER S.Analysis of Bayesian classification-based approaches for Android malware detection[J].IET Information Security,2014,8(1):25-36. [12] RASHIDI B,FUNG C,VU T.Android fine-grained permission control system with real-time expert recommendations[J].Pervasive and Mobile Computing,2016,10(32):62-77. [13] REHMAN Z U,KHAN S N,MUHAMMAD K,et al.Machine learning-assisted signature and heuristic-based detection of malwares in Android devices[J].Computers and Electrical Engineering,2017,69(11):828-841. [14] DAMSHENAS M,DEHGHANTANHA A,CHOO K K R,et al.M0Droid:an Android behavioral-based malware detection model[J].Journal of Information Privacy and Security,2015,11(3):141-157. [15] BURGUERA I,ZURUTUZA U,NADJM T S.Crowdroid:behavior-based malware detection system for Android[C]//Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.New York,USA:ACM Press,2011:15-26. [16] ENCK W,GILBERT P,HAN S,et al.TaintDroid:an information-flow tracking system for realtime privacy monitoring on smartphones[J].ACM Transactions on Computer Systems,2014,32(2):5-6. [17] ENCK W,PETER G,CHUN B G,et al.TaintDroid:an information-flow tracking system for realtime privacy monitoring on smartphones[J].ACM Transactions on Computer Systems,2010,57(3):393-407. [18] ZHANG Yi,YANG Yuexiang,WANG Xiaolei.A novel Android malware detection approach based on convolutional neural network[C]//Proceedings of the 2nd International Conference on Cryptography,Security and Privacy.New York,USA:ACM Press,2018:144-149. [19] XIAO X,ZHANG S F,MERCALDO F,et al.Android malware detection based on system call sequences and LSTM[J].Multimedia Tools and Applications,2019,78(4):3979-3999. [20] MCLAUGHLIN N,MARTINEZ D R J,KANG B,et al.Deep Android malware detection[C]//Proceedings of the 7th ACM Conference on Data and Application Security and Privacy.New York,USA:ACM Press,2017:1735-1780. [21] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. |