[1] ZBONTAR J,LECUN Y.Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1592-1599. [2] CHEN Tuo.Research on stereo matching technology based on convolutional neural network[D].Hangzhou:Zhejiang University,2017.(in Chinese)陈拓.基于卷积神经网络的立体匹配技术研究[D].杭州:浙江大学,2017. [3] WANG Jieqiong.Study on stereo matching of binocular stereo vision[D].Kunming:Kunming University of Science and Technology,2016.(in Chinese)王杰琼.双目立体视觉匹配方法研究[D].昆明:昆明理工大学,2016. [4] LUO W J,SCHWING A G,URTASUN R.Efficient deep learning for stereo matching[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:5695-5703. [5] MAYER N,ⅡG E,HAUSSER P,et al.A large dataset to train convolutional networks for disparity,optical flow,and scene flow estimation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:4040-4048. [6] HAN N X,LEUNG T,JIA Y,et al.MatchNet:unifying feature and metric learning for patch-based matching[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:3279-3286. [7] ZAGORUYKO S,KOMODAKIS N.Learning to compare image patches via vonvolutional neural networks[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:4353-4361. [8] SIMO-SERRA E,TRULLS E,FERRAZ L,et al.Discriminative learning of deep convolutional feature point descriptors[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:118-126. [9] PARK H,LEE K M.Look wider to match image patches with convolutional neural networks[J].IEEE Signal Processing Letters,2017,99:1-3. [10] KENDALL A,MARTIROSYAN H,DASGUPTA S,et al.End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:66-75. [11] PANG J H,SUN W X,RRN J,et al.Cascade residual learning:a two-stage convolutional neural network for stereo matching[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:887-895. [12] LIANG Zhengfa,FENG Yiliu,GUO Yulan,et al.Learning for disparity estimation through feature constancy[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2811-2820. [13] SHAKED A,WOLF L.Improved stereo matching with constant highway networks and reflective confidence learning[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:4641-4650. [14] CHANG Jiaren,CHEN Yongsheng.Pyramid stereo matching network[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:5410-5418. [15] MA Wei,LI Tong,GONG Chaofan,et al.Stereo matching with CNN and constraints from segmentation[J].Journal of Beijing University of Technology,2019,45(5):413-420.(in Chinese)马伟,李曈,龚超凡,等.结合CNN与分割约束的立体匹配算法[J].北京工业大学学报,2019,45(5):413-420. [16] YU Lidong,WANG Yucheng,WU Yuwei,et al.Deep stereo matching with explicit cost aggregation sub-architecture[EB/OL].[2019-10-15].https://arxiv.org/pdf/1801.04065.pdf. [17] SONG Xiao,ZHAO Xu,HU Hanwen,et al.EdgeStereo:a context integrated residual pyramid network for stereo matching[EB/OL].[2019-10-15].https://arxiv.org/pdf/1803.05196.pdf. [18] YANG Guorun,ZHAO Hengshuang,SHI Jiaping,et al.SegStereo:exploiting semantic information for disparity estimation[C]//Proceedings of 2018 European Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2018:636-651. [19] JIE Zequn,WANG Pengfei,LING Yonggen,et al.Left-right comparative recurrent model for stereo matching[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:3838-3846. [20] ANITA R.Learing similarity for 3D reconstruction of intraoperative environment with convolutional neural networks[D].London,UK:University College London,2017. |