[1] LIAN Yiya,WU Xiaojun.Research on image super-resolution reconstruction of super deep convolutional neural network[J].Computer Engineering,2019,45(1):217-220.(in Chinese)连逸亚,吴小俊.超深卷积神经网络的图像超分辨率重建研究[J].计算机工程,2019,45(1):217-220. [2] LI Sumei,LEI Guoqing,FAN Ru.Depth map super-resolution reconstruction based on convolutional neural networks[J].Acta Optica Sinica,2017,37(12):124-132.(in Chinese)李素梅,雷国庆,范如.基于卷积神经网络的深度图超分辨率重建[J].光学学报,2017,37(12):124-132. [3] DONG C,LOY C,HE K M,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. [4] DONG C,LOY C,HE K M,et al.Accelerating the super-resolution convolutional neural network[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:391-407. [5] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [6] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1646-1654. [7] KIM J,LEE J K,LEE K M.Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1637-1645. [8] SHI W,CABALLERO J,HUSZÁR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1874-1883. [9] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Procee-dings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2017:1132-1140. [10] BUADES A,COLL B,MOREL J M.A non-local algorithm for image denoising[C]//Proceedings of CVPR'05.Washington D.C.,USA:IEEE Press,2005:1-3. [11] DONG Weisheng,ZHANG Lei,SHI Guangming,et al.Nonlocally centralized sparse representation for image restoration[J].IEEE Transactions on Image Processing,2013,22(4):1620-1630. [12] LI Peihua,XIE Jiantao,WANG Qinglong,et al.Is second-order information helpful for large-scale visual recognition?[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:2089-2097. [13] WANG X L,GIRSHICK R,GUPTA A,et al.Non-local neural networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:7794-7803. [14] HU J,SHEN L,SAMUEL A.Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:7132-7141. [15] WOO S,PARK J C,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of ECCV'18.Berlin,Germany:Springer,2018:3-19. [16] ZHANG Yulun,LI Kunpeng,WANG Lichen,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of ECCV'18.Berlin,Germany:Springer,2018:294-310. [17] DAI Tao,CAI Jianrui,ZHANG Yongbing,et al.Second-order attention network for single image super-resolution[C]//Proceedings of CVPR'19.Washington D.C.,USA:IEEE Press,2019:11065-11074. [18] HU Xuecai,MU Haoyuan,ZHANG Xiangyu,et al.Meta-SR:a magnification-arbitrary network for super-resolution[C]//Proceedings of CVPR'19.Washington D.C.,USA:IEEE Press,2019:1575-1584. [19] MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of ICCV'01.Washington D.C.,USA:IEEE Press,2001:1-5. [20] BEVILACQUA M.Low complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of BMVC'12.Berlin,Germany:2012:1-10. [21] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//Proceedings of Interna-tional Conference on Curves and Surface.Berlin,Germany:Springer,2010:711-730. [22] KINGMA D,BA J.Adam:a method for stochastic optimiza-tion[EB/OL].(2014-12-22)[2019-12-20].https://arxiv.org/pdf/1412.6980.pdf. [23] WANG Zhaowen,LIU Ding,YANG Jianchao,et al.Deep networks for image super-resolution with sparse prior[C]//Proceedings of ICCV'15.Washington D.C.,USA:IEEE Press,2015:1-7. [24] LAI W S,HUANG J B,AHUJA N,et al.Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of CVPR'17.Washington D.C.,USA:IEEE Press,2017:5835-5843. |