[1] DONG C,LOY C C,HE K M,et al.Learning a deep convolutional network for image super-resolution[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2014:184-199. [2] ZHANG Kai,ZUO Wangmeng,ZHANG Lei.Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:3262-3271. [3] CHEN Xiaofan,SHEN Haijie,BIAN Qian,et al.Face image super-resolution with an attention mechanism[J].Journal of Xidian University(Natural Science),2019,46(3):148-153.(in Chinese)陈晓范,申海杰,边倩,等.结合注意力机制的人脸超分辨率重建[J].西安电子科技大学学报(自然科学版),2019,46(3):148-153. [4] KIM J,KWON L J,MU L K.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1646-1654. [5] KIM J,KWON L J,MU L K.Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1637-1645. [6] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [7] HE Yufei,GAO Hongwei.Super-resolution reconstruction using multilayer connected convolutional neural network for single-frame image[J].Computer Applications and Software,2019,36(5):220-224,326.(in Chinese)贺瑜飞,高宏伟.基于多层连接卷积神经网络的单帧图像超分辨重建[J].计算机应用与软件,2019,36(5):220-224,326. [8] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2017:136-144. [9] TAI Ying,YANG Jian,LIU Xiaoming.Image super-resolution via deep recursive residual network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:3147-3155. [10] ZHANG H,GOODFELLOW I,METAXAS D,et al.Self-attention generative adversarial networks[EB/OL].[2019-10-02].https://arxiv.org/pdf/1805.08318.pdf. [11] LIN Hong, REN Shuo, YANG Yi, et al. Unsupervised image-to-image translation with self-attention and relativistic discriminator adversarial networks[J/OL]. Acta Automatica Sinica:1-10[2019-09-04].https://kns.cnki.net/kcms/detail/11.2109.TP.20190530.1347.001.html.(in Chinese)林泓,任硕,杨益,等.融合自注意力机制和相对鉴别的无监督图像翻译[J/OL].自动化学报:1-10[2019-09-04].https://kns.cnki.net/kcms/detail/11.2109.TP.20190530.1347.001.html. [12] ZHANG Yulun,LI Kunpeng,LI Kai,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:286-301. [13] HU J,SHEN L,ALBANIE S.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):7132-7141. [14] SHI W,CABALLERO J,HUSZAR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of 2016 Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2016:1874-1883. [15] ZHENG Hui,WANG Xiumei,GAO Xinbo.Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:723-731. [16] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Delving deep into rectifiers:surpassing human-level performance on imagenet classification[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1026-1034. [17] KINGMA D P,BA J.Adam:a method for stochastic optimization[EB/OL].[2019-10-02].http://de.arxiv.org/pdf/1412.6980. [18] TIMOFTE R,AGUSTSSON E,VAN GOOL L,et al.Ntire 2017 challenge on single image super-resolution:methods and results[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2017:114-125. [19] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[EB/OL].[2019-10-02].https://www.ixueshu.com/document/7e12bde83a725a9f318947a18e7f9386.html. [20] MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2001:1286-1296. [21] HUANG J B,SINGH A,AHUJA N.Single image super-resolution from transformed self-exemplars[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:5197-5206. [22] MATSUI Y,ITO K,ARAMAKI Y,et al.Sketch-based manga retrieval using manga109 dataset[J].Multimedia Tools and Applications,2017,76(20):21811-21838. [23] LEDIG C,THEIS L,HUSZAR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:4681-4690. [24] YANG Wenming,ZHANG Xuechen,TIAN Yapeng,et al.Deep learning for single image super-resolution:a brief review[EB/OL].[2019-10-02].https://www.researchgate.net/profile/Yapeng_Tian/publication/326988108_Deep_Learning_for_Single_Image_Super-Resolution_A_Brief_Review/links/5b96dad392851c78c412dfb4/Deep-Learning-for-Single-Image-Super-Resolution-A-Brief-Review.pdf. |