[1] 李岳松, 罗亚平.运用Evofinder枪弹自动识别系统对建档手枪弹头数字化建档的研究[J].刑事技术, 2018, 43(5):363-368. LI Y S, LUO Y P.Digital filing into the registered-bullet imaging database by ballistic identification system Evofinder[J].Forensic Science and Technology, 2018, 43(5):363-368.(in Chinese) [2] 周志飞, 李轶昳, 鲍立垠, 等.非制式枪射击弹头痕迹自动识别系统及性能测试[J].刑事技术, 2016, 41(2):99-102. ZHOU Z F, LI Y Y, BAO L Y, et al.Introduction to the automatic identification system of non-standard firearms' bullet marks and its performance[J].Forensic Science and Technology, 2016, 41(2):99-102.(in Chinese) [3] GERULES G, BHATIA S K, JACKSON D E.A survey of image processing techniques and statistics for ballistic specimens in forensic science[J].Science & Justice, 2013, 53(2):236-250. [4] MURTHY S S, MAZUMDAR C, RAO M C, et al.Intensity-based image matching for regular firearms[J].International Journal of Imaging Systems and Technology, 2002, 12(2):68-72. [5] WEN C Y, YAO J Y.Pistol image retrieval by shape representation[J].Forensic Science International, 2006, 155(1):35-50. [6] 冯艳平, 王徽.基于阈值分割和边缘检测的枪支THz图像识别[J].红外, 2011, 32(12):23-26. FENG Y P, WANG H.Feature recognition of pistol in THz image based on threshold segmentation and edge detection[J].Infrared, 2011, 32(12):23-26.(in Chinese) [7] 和睿, 孙永奇.Canny特征在基于内容的图像检索中的应用[J].云南大学学报(自然科学版), 2011, 33(6):651-657. HE R, SUN Y Q.A content-based image retrieval method based on Canny feature[J].Journal of Yunan University(Natural Science Edition), 2011, 33(6):651-657.(in Chinese) [8] 张树江, 颜景龙, 邢慧.一种基于图像检索的枪弹识别系统[J].兵工学报, 2008(4):459-463. ZHANG S J, YAN J L, XING H.A cartridge identification system based on image retrieval[J].Acta Armamentarii, 2008(4):459-463.(in Chinese) [9] LECUN Y, BENGIO Y, HINTON G.Deep learning[J].Nature, 2015, 521(7553):436-444. [10] SZEGEDY C, WEI L, JIA Y, et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1-9. [11] SHORTEN C, KHOSHGOFTAAR T M.A survey on image data augmentation for deep learning[J].Journal of Big Data, 2019, 6(1):10-15. [12] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:156-163. [13] 郭玥秀, 杨伟, 刘琦, 等.残差网络研究综述[J].计算机应用研究, 2020, 37(5):1292-1297. GUO Y X, YANG W, LIU Q, et al.Survey of residual network[J].Application Research of Computers, 2020, 37(5):1292-1297.(in Chinese) [14] 张枫, 田联房, 杜启亮.基于残差网络与中心损失的人脸识别[J].计算机工程与设计, 2019, 40(6):1689-1695. ZHANG F, TIAN L F, DU Q L.Face recognition based on ResNet and center loss[J].Computer Engineering and Design, 2019, 40(6):1689-1695.(in Chinese) [15] 齐永锋, 马中玉.基于深度残差网络的多损失头部姿态估计[J].计算机工程, 2020, 46(12):247-253. QI Y F, MA Z Y.Multi-loss head posture estimation based on deep residual network[J].Computer Engineering, 2020, 46(12):247-253.(in Chinese) [16] 关胤.基于残差网络迁移学习的花卉识别系统[J].计算机工程与应用, 2019, 55(1):174-179. GUAN Y.Flower species recognition system based on residual network transfer learning[J].Computer Engineering and Applications, 2019, 55(1):174-179.(in Chinese) [17] 倪志文, 马小虎, 孙霄, 等.结合显式和隐式特征交互的深度融合模型[J].计算机工程, 2020, 46(3):87-92, 98. NI Z W, MA X H, SUN X, et al.Deep fusion model combining explicit and implicit feature interactions[J].Computer Engineering, 2020, 46(3):87-92, 98.(in Chinese) [18] SERGEY I, CHRISTIAN S.Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2020-09-05].https://arxiv.org/pdf/1502.03167v2.pdf. [19] FENG W, CHEN J, LIU W Y, et al.Additive margin Softmax for face verification[J].IEEE Signal Processing Letters, 2018, 25(7):926-930. [20] RUSSAKOVSKY O, DENG J, SU H, et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision, 2015, 115(3):211-252. [21] TAN M, LE Q.EfficientNet:rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2019:6105-6114. [22] YANG Z, LUO T, WANG D, et al.Learning to navigate for fine-grained classification[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:438-454. |