[1] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. [2] BENGIO Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-127. [3] SCHMIDHUBER J.Deep learning in neural networks:an overview[J].Neural Networks,2015,61:85-117. [4] HINTON G,DENG L,YU D,et al.Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J].IEEE Signal Processing Magazine,2012,29(6):82-97. [5] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2012:1097-1105. [6] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2014:2672-2680. [7] KINGMA D P,WELLING M.Auto-encoding variational bayes[EB/OL].[2018-05-22].https://arxiv.org/pdf/1312.6114.pdf. [8] 王坤峰,苟超,段艳杰,等.生成式对抗网络GAN的研究进展与展望[J].自动化学报,2017,43(3):321-332. [9] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein GAN[EB/OL].[2018-05-22].https://arxiv.org/pdf/1701.07875.pdf. [10] FUGLEDE B,TOPSOE F.Jensen-Shannon divergence and Hilbert space embedding[C]//Proceedings of International Symposium on Information Theory.Washington D.C.,USA:IEEE Press,2004:31. [11] GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improved training of wasserstein GANs[EB/OL].[2018-05-22].https://arxiv.org/pdf/1704.00028.pdf. [12] NOWOZIN S,CSEKE B,TOMIOKA R.f-GAN:training generative neural samplers using variational divergence minimization[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2016:271-279. [13] MAO Xudong,LI Qing,XIE Haoran,et al.Least squares generative adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1611.04076.pdf. [14] QI Guojun.Loss-sensitive generative adversarial networks on lipschitz densities[EB/OL].[2018-05-22].https://arxiv.org/pdf/1701.06264.pdf. [15] ZHAO Junbo,MATHIEU M,LECUN Y.Energy-based generative adversarial network[EB/OL].[2018-05-22].https://arxiv.org/pdf/1609.03126.pdf. [16] DAI Zihang,ALMAHAIRI A,BACHMAN P,et al.Calibrating energy-based generative adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1702.01691.pdf. [17] WANG Dilin,LIU Qiang.Learning to draw samples:with application to amortized mle for generative adversarial learning[EB/OL].[2018-05-22].https://arxiv.org/pdf/1611.01722.pdf. [18] BERTHELOT D,SCHUMM T,METZ L.BEGAN:boundary equilibrium generative adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1703.10717.pdf. [19] CHEN Xi,DUAN Yan,HOUTHOOFT R,et al.InfoGAN:interpretable representation learning by information maximizing generative adversarial nets[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2016:2172-2180. [20] MAKHZANI A,FREY B J.PixelGAN autoencoders[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2017:1972-1982. [21] MIRZA M,OSINDERO S.Conditional generative adversarial nets[EB/OL].[2018-05-22].https://arxiv.org/pdf/1411.1784.pdf. [22] DENG Zhijie,ZHANG Hao,LIANG Xiaodan,et al.Structured generative adversarial networks[C]//Proceedings of International Conference in Neural Information Processing Systems.[S.l.]:Curran Associates Inc.,2017:3902-3912. [23] SPRINGENBERGJ T.Unsupervised and semi-supervised learning with categorical generative adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1511.06390.pdf. [24] ZHANG Han,XU Tao,LI Hongsheng,et al.StackGAN:text to photo-realistic image synthesis with stacked generative adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1612.03242.pdf. [25] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1511.06434.pdf. [26] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [27] LECUN Y,BOSER B,DENKER J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551. [28] YI Zili,ZHANG Hao,PING Tan,et al.DualGAN:unsupervised dual learning for image-to-image translation[EB/OL].[2018-05-22]. https://arxiv.org/pdf/1704.02510.pdf. [29] KIM T,CHA M,KIM H,et al.Learning to discover cross-domain relations with generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning.Berlin,Germany:Springer,2017:1857-1865. [30] ZHU Junyan,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1703.10593.pdf. [31] GAN Zhe,CHEN Liqun,WANG Weiyao,et al.Triangle generative adversarial networks[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2017:5253-5262. [32] NGUYEN T,LE T,VU H,et al.Dual discriminator generative adversarial nets[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press, 2017:2667-2677. [33] LI Chongxuan,XU Tun,ZHU Jun,et al.Triple generative adversarial nets[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press, 2017:4091-4101. [34] CHAVDAROVA T,FLEURET F.SGAN:an alternative training of generative adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:9407-9415 [35] DENTON E,CHINTALA S,FERGUS R.Deep generative image models using a Laplacian pyramid of adversarial networks[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2015:1486-1494. [36] IM D J,KIM C D,JIANG Hui,et al.Generating images with recurrent adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1602.05110.pdf. [37] GREGOR K,DANIHELKA I,GRAVES A,et al.DRAW:a recurrent neural network for image generation[C]//Proceedings of International Conference on International Conference on Machine Learning.[S.l.]:JMLR.org,2015:1462-1471. [38] SALIMANS T,GOODFELLOW I,ZAREMBA W,et al.Improved techniques for training GANs[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2016:2234-2242. [39] LARSEN A B L,SØNDERBY S K,LAROCHELLE H,et al.Autoencoding beyond pixels using a learned similarity metric[C]//Proceedings of International Conference on Machine Learning.[S.l.]:JMLR.org,2016:1558-1566. [40] MESCHEDER L,NOWOZIN S,GEIGER A.Adversarial variational Bayes:unifying variational autoencoders and generative adversarial networks[C]//Proceedings of International Conference on International Conference on Machine Learning.[S.l.]:JMLR.org,2017:2391-2400. [41] SALIMANS T,KARPATHY A,CHEN Xi,et al.PixelCNN++:improving the pixelCNN with discretized logistic mixture likelihood and other modifications[EB/OL].[2018-05-22]. https://arxiv.org/pdf/1701.05517.pdf. [42] OORDA V D,KALCHBRENNER N,KAVUKCUOGLU K.Pixel recurrent neural networks[C]//Proceedings of International Conference on International Conference on Machine Learning.[S.l.]:JMLR.org,2016:1747-1756. [43] DOSOVITSKIY A,BROX T.Generating images with perceptual similarity metrics based on deep networks[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2016:658-666. [44] GRAVES A.Generating sequences with recurrent neural networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1308.0850.pdf. [45] LEE H Y,TSENG B H,WEN T H,et al.Personalizing recurrent-neural-network-based language model by social network[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2017,25(3):519-530. [46] MOGRENO.C-RNN-GAN:continuous recurrent neural networks with adversarial training[EB/OL].[2018-05-22].https://arxiv.org/pdf/1611.09904.pdf. [47] YU Lantao,ZHANG Weinan,WANG Jun,et al.SeqGAN:sequence generative adversarial nets with policy gradient[C]//Proceedings of Conference on Artificial Intelligence.[S.l.]:AAAI Press,2017:2852-2858. [48] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [49] SAK H,SENIOR A,BEAUFAYS F.Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition[EB/OL].[2018-05-22]. https://arxiv.org/pdf/1402.1128v1.pdf. [50] KWAK H,ZHANG B T.Generating images part by part with composite generative adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1607.05387.pdf. [51] YANG Jianwei,KANNAN A,BATRA D,et al.LR-GAN:Layered recursive generative adversarial networks for image generation[EB/OL].[2018-05-22].https://arxiv.org/pdf/1703.01560.pdf. [52] GATYS L A,ECKER A S,BETHGE M.A neural algorithm of artistic style[EB/OL].[2018-05-22].https://arxiv.org/pdf/1508.06576.pdf. [53] JOHNSON J,ALAHI A,LI Feifei.Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:694-711. [54] BOUSMALIS K,SILBERMAN N,DOHAN D,et al.Unsupervised pixel-level domain adaptation with generative adversarial networks[EB/OL].[2018-05-22].https://arxiv.org/pdf/1612.05424.pdf. [55] LIU Mingyu,BREUEL T,KAUTZ J.Unsupervised image-to-image translation networks[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2017:700-708. [56] SHRIVASTAVA A,PFISTER T,TUZEL O,et al.Learning from simulated and unsupervised images through adversarial training[EB/OL].[2018-05-22].https://arxiv.org/pdf/1612.07828.pdf. [57] ISOLA P,ZHU Junyan,ZHOU Tinghui,et al.Image-to-image translation with conditional adversarial networks[EB/OL].[2018-05-22]. https://arxiv.org/pdf/1611.07004.pdf. [58] LIU Mingyu,TUZEL O.Coupled generative adversarial networks[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2016:469-477. [59] LEDIG C,THEIS L,HUSZÁR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[EB/OL].[2018-05-22].https://arxiv.org/pdf/1609.04802v1.pdf. [60] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [61] BOER J F D,CENSE B,PARK B H,et al.Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J].Optics Letters,2003,28(21):2067-2069. [62] ARDENKJÆR-LARSEN J H,FRIDLUND B,GRAM A,et al.Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR[J].Proceedings of the National Academy of Sciences,2003,100(18):10158-10163. [63] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-05-22].https://arxiv.org/pdf/1409.1556.pdf. [64] ZHANG Jun,YAN Yong,LADES M.Face recognition:eigenface,elastic matching,and neural nets[J].Proceedings of the IEEE,1997,85(9):1423-1435. [65] CHOPRA S,HADSELL R,LECUN Y.Learning a similarity metric discriminatively,with application to face verification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2005:539-546. [66] HUANG Rui,ZHANG Shu,LI Tianyu,et al.Beyond face rotation:global and local perception GAN for photorealistic and identity preserving frontal view synthesis[EB/OL].[2018-05-22].https://arxiv.org/pdf/1704.04086.pdf. [67] 姚乃明,郭清沛,乔逢春,等.基于生成式对抗网络的鲁棒人脸表情识别[J].自动化学报,2018,44(5):865-877. [68] LI Yijun,LIU Sifei,YANG Jimei,et al.Generative face completion[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:3911-3919. [69] KARPATHY A,LI Feifei.Deep visual-semantic alignments for generating image descriptions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:3128-3137. [70] REED S,AKATA Z,YAN Xinchen,et al.Generative adversarial text to image synthesis[C]//Proceedings of International Conference on International Conference on Machine Learning.[S.l.]:JMLR.org,2016:1060-1069. [71] XU Tao,ZHANG Pengchuan,HUANG Qiuyuan,et al.AttnGAN:fine-grained text to image generation with attentional generative adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1316-1324. [72] CHEN Yang,LAI Yukun,LIU Yongjin.CartoonGAN:generative adversarial networks for photo cartoonization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:9465-9474. [73] PERARNAU G,WEIJER J V,RADUCANU B,et al.Invertible conditional GANs for image editing[EB/OL].[2018-05-22].https://arxiv.org/pdf/1611.06355.pdf. [74] KOSSAIFI J,TRAN L,PANAGAKIS Y,et al.GAGAN:geometry-aware generative adverserial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:878-887. [75] MA Shuang,FU Jianlong,CHEN Changwei,et al.DA-GAN:instance-level image translation by deep attention generative adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:5657-5666. [76] WANG Zongwei,TANG Xu,LUO Weixin,et al.Face aging with identity-preserved conditional generative adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:7939-7947. [77] CHOI Y,CHOI M,KIM M,et al.StarGAN:unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:8789-8797. [78] REED S E,AKATA Z,MOHAN S,et al.Learning what and where to draw[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2016:217-225. [79] BAI Yancheng,ZHANG Yongqiang,DING Mingli,et al.Finding tiny faces in the wild with generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:21-30. [80] WANG Jifeng,LI Xiang,HUI Le,et al.Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1788-1797. [81] QIAN Rui,TAN R T,YANG Wenhan,et al.Attentive generative adversarial network for raindrop removal from a single image[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2482-2491. [82] CHEN J,CHEN J,CHAO H,et al.Image blind denoising with generative adversarial network based noise modeling[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:3155-3164. [83] LI Ruide,PAN Jinshan,LI Zechao,et al.Single image dehazing via conditional generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Computer Society,2018:8202-8211. [84] NGUYEN V,VICENTE T F Y,ZHAO Maozheng,et al.Shadow detection with conditional generative adversarial networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:4520-4528. [85] VONDRICK C,PIRSIAVASH H,TORRALBA A.Generating videos with scene dynamics[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2016:613-621. [86] BERNHARD K,HUANG Zhiwu,DANDA P P,et al.Improving video generation for multi-functional applications[EB/OL].[2018-05-22].https://arxiv.org/pdf/1711.11453v2.pdf. [87] SAITO M,MATSUMOTO E,SAITO S.Temporal generative adversarial nets with singular value clipping[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2830-2839. [88] TULYAKOV S,LIU Mingyu,YANG Xiaodong,et al.MoCoGAN:decomposing motion and content for video generation[EB/OL].[2018-05-22].https://arxiv.org/pdf/1707.04993.pdf. [89] 孔德江,汤斯亮,吴飞.时空嵌入式生成对抗网络的地点预测方法[J].模式识别与人工智能,2018,31(1):49-60. [90] XIONG Wei,LUO Wenhan,MA Lin,et al.Learning to generate time-lapse videos using multi-stage dynamic generative adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2364-2373. [91] GUPTA A,JOHNSON J,LI Feifei,et al.Social GAN:socially acceptable trajectories with generative adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2255-2264. [92] WANG Weiyue,HUANG Qiangui,YOU Suya,et al.Shape inpainting using 3D generative adversarial network and recurrent convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2298-2306. [93] WU Jiajun,ZHANG Chengkai,XUE Tianfan,et al.Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling[C]//Proceedings of International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2016:82-90. [94] SAGE A,AGUSTSSON E,TIMOFTE R,et al.Logo synthesis and manipulation with clustered generative adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:5879-5888. [95] DOLHANSKY B,FERRER C C.Eye in-painting with exemplar generative adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:5657-5666. [96] HAUSMAN K,CHEBOTAR Y,SCHAAL S,et al.Multi-modal imitation learning from unstructured demonstrations using generative adversarial nets[EB/OL].[2018-05-22].https://arxiv.org/pdf/1705.10479.pdf. [97] BARAM N,ANSCHEL O,CASPI I,et al.End-to-end differentiable adversarial imitation learning[C]//Proceedings of International Conference on International Conference on Machine Learning.[S.l.]:JMLR.org,2017:390-399. [98] ZHANG Yizhe,GAN Zhe,FAN Kai,et al.Adversarial feature matching for text generation[C]//Proceedings of International Conference on International Conference on Machine Learning.[S.l.]:JMLR.org,2017:4006-4015. [99] MAKHZANI A,SHLENS J,JAITLY N,et al.Adversarial autoencoders[EB/OL].[2018-05-22].https://arxiv.org/pdf/1511.05644.pdf. |