作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (4): 294-300. doi: 10.19678/j.issn.1000-3428.0054599

• 开发研究与工程应用 • 上一篇    下一篇

基于YOLO v3的输电线路鸟类检测技术研究

陈咏秋, 孙凌卿, 张永泽, 傅启明, 陆宇, 李渊博, 孙建刚   

  1. 江苏电力信息技术有限公司, 南京 210000
  • 收稿日期:2019-04-12 修回日期:2019-05-13 出版日期:2020-04-15 发布日期:2019-05-20
  • 作者简介:陈咏秋(1981-),男,高级工程师,主研方向为电力信息化技术;孙凌卿,工程师;张永泽,硕士;傅启明、陆宇,学士;李渊博、孙建刚,硕士。
  • 基金资助:
    国家电网公司科技项目(XM201831160132)。

Research on Bird Detection Technology for Electric Transmission Line Based on YOLO v3

CHEN Yongqiu, SUN Lingqing, ZHANG Yongze, FU Qiming, LU Yu, LI Yuanbo, SUN Jiangang   

  1. Jiangsu Electric Power Information Technology Co., Ltd., Nanjing 210000, China
  • Received:2019-04-12 Revised:2019-05-13 Online:2020-04-15 Published:2019-05-20

摘要: 输电线路安全是电网安全稳定运行的前提,但是鸟类对输电线路造成的危害直接威胁到输电线路的安全运行。为解决传统驱鸟器启停策略的弊端,提出基于YOLO v3算法的输电线路鸟类检测模型。通过输电线路监控装置获取图像数据,使用残差模块提取图像的深层次特征,采用多尺度目标检测策略来保证鸟类的检测效果。实验结果表明,在输电线路鸟类检测任务中,该模型准确率可以达到86.75%,检测速度达到47 frame/s,可以精确实时地检测出输电线路周围的鸟类数目,并验证了该模型在雨天、雾天、抖动情况下具有较强鲁棒性,可以保障输电线路的安全、稳定运行。

关键词: YOLO v3算法, 输电线路, 鸟类检测, 多尺度目标, 实时检测, 深度学习

Abstract: The safety of electric transmission line is the prerequisite of a safe and stable operation of power grid,but the damage caused by birds directly threatens the safe operation of electric transmission line.To address the disadvantages of traditional bird repellent start-stop strategy,this paper proposes a bird detection model for electric transmission lines based on YOLO v3 algorithm.This model obtains the image data through electric transmission line monitoring device,extracts the deep features of images by residual module and uses multiple scale object detection strategy to guarantee the bird detection effect.Experimental results show that in the bird detection tasks for electric transmission line,the accuracy of the proposed model can reach 86.75% and the detection speed can be up to 47 frame/s.This model can accurately and timely detect the bird number around the electric transmission line and its high robustness is verified in rainy,foggy and jittering scenes,which proves it can guarantee a safe and stable operation of electric transmission line.

Key words: YOLO v3 algorithm, electric transmission line, bird detection, multiple scale object, timely detection, deep learning

中图分类号: