[1] AYO F E, FOLORUNSO S O, ABAYOMI-ALLI A A, et al.Network intrusion detection based on deep learning model optimized with rule-based hybrid feature selection[J].Information Security Journal:A Global Perspective, 2020, 29(6):267-283. [2] MA Z, LI J, SONG Y, et al.Network intrusion detection method based on FCWGAN and BiLSTM[J].Computa-tional Intelligence and Neuroscience, 2022, 15:6591140. [3] LI Z P, QIN Z, HUANG K, et al.Intrusion detection using convolutional neural networks for representation learning[C]//Proceedings of International Conference on Neural Information Processing.Berlin, Germany:Springer, 2017:858-866. [4] ZARAI R, KACHOUT M, HAZBER M A G, et al.Recurrent neural networks and deep neural networks based on intrusion detection system[J].OALib, 2020, 7(3):1-11. [5] SUWANNALAI E, POLPRASERT C.Network intrusion detection systems using adversarial reinforcement learning with deep Q-network[C]//Proceedings of the 18th International Conference on ICT and Knowledge Engineering.Washington D.C., USA:IEEE Press, 2020:1-7. [6] ZHAO R J, LI Z J, XUE Z, et al.A novel approach based on lightweight deep neural network for network intrusion detection[C]//Proceedings of IEEE Wireless Communications and Networking Conference.Washington D.C., USA:IEEE Press, 2021:1-6. [7] CANER S, ERDOĞMUŞ N, ERTEN Y M.Performance analysis and feature selection for network-based intrusion detection with deep learning[J].Turkish Journal of Electrical Engineering and Computer Sciences, 2022, 30(3):629-643. [8] 生龙, 袁丽娜, 武南南, 等.基于GSA与DE优化混合核ELM的网络异常检测模型[J].计算机工程, 2022, 48(6):146-153. SHENG L, YUAN L N, WU N N, et al.Network anomaly detection model based on GSA and DE optimizing hybrid kernel ELM[J].Computer Engineering, 2022, 48(6):146-153.(in Chinese) [9] AL-SAREM M, SAEED F, ALKHAMMASH E H, et al.An aggregated mutual information based feature selection with machine learning methods for enhancing IoT botnet attack detection[J].Sensors, 2021, 22(1):185. [10] WANG Z H, LIU J H, SUN L Y.EFS-DNN:an ensemble feature selection-based deep learning approach to network intrusion detection system[J].Security and Communication Networks, 2022, 10:1-14. [11] CHAUHAN P S, KSHETRI N.2021 state of the practice in data privacy and security[J].Computer, 2021, 54(8):125-132. [12] ANDRADE M L, ALCÂNTARA S M, COTA D F H.Reconfigurable FPGA-based K-means/K-modes architecture for network intrusion detection[J].IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(8):1459-1463. [13] YIN X F, ZHU Y M, HU J K.A comprehensive survey of privacy-preserving federated learning:a taxonomy, review, and future directions[J].ACM Computing Surveys, 2022, 54(6):131. [14] FRIHA O, FERRAG M A, SHU L, et al.FELIDS:federated learning-based intrusion detection system for agricultural Internet of Things[J].Journal of Parallel and Distributed Computing, 2022, 165:17-31. [15] CIREGAN D, MEIER U, SCHMIDHUBER J.Multi-column deep neural networks for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2012:3642-3649. [16] GUO J, WANG L.Learning to upgrade Internet information security and protection strategy in big data era[J].Computer Communications, 2020, 160:150-157. [17] 王旭仁, 马慧珍, 冯安然, 等.基于信息增益与主成分分析的网络入侵检测方法[J].计算机工程, 2019, 45(6):175-180. WANG X R, MA H Z, FENG A R, et al.Network intrusion detection method based on information gain and principal components analysis[J].Computer Engineering, 2019, 45(6):175-180.(in Chinese) [18] CHOWDHURY R, SEN S, ROY A, et al.An optimal feature based network intrusion detection system using bagging ensemble method for real-time traffic analysis[J].Multimedia Tools and Applications, 2022, 81(28):41225-41247. [19] GHOSH P, ALAM Z, SHARMA R R, et al.An efficient SGM based IDS in cloud environment[J].Computing, 2022, 104(3):553-576. [20] BEULAH J R, NALINI M, IRENE D S, et al.Enhancing detection of R2L attacks by multistage clustering based outlier detection[J].Wireless Personal Communications, 2022, 124(3):2637-2659. [21] TAVALLAEE M, BAGHERI E, LU W, et al.A detailed analysis of the KDDCup99 data set[C]//Proceedings of IEEE Symposium on Computational Intelligence for Security and Defense Applications.Washington D.C., USA:IEEE Press, 2009:1-6. [22] GOWDHAMAN V, DHANAPAL R.An intrusion detection system for wireless sensor networks using deep neural network[J].Soft Computing, 2022, 26(23):13059-13067. [23] HUSSAIN G K J, MANOJ G.Federated learning:a survey of a new approach to machine learning[C]//Proceedings of the 1st International Conference on Electrical, Electronics, Information and Communication Technologies.Washington D.C., USA:IEEE Press, 2022:1-8. [24] TRELEAVEN P, SMIETANKA M, PITHADIA H.Federated learning:the pioneering distributed machine learning and privacy-preserving data technology[J].Computer, 2022, 55(4):20-29. [25] PANDA S K, BHOI S K, SINGH M.A collaborative filtering recommendation algorithm based on normalization approach[J].Journal of Ambient Intelligence and Humanized Computing, 2020, 11(11):4643-4665. [26] PATEL O P, TIWARI A, BAGADE V.Quantum-inspired stacked auto-encoder-based deep neural network algorithm (Q-DNN)[J].Arabian Journal for Science and Engineering, 2018, 43(12):6929-6943. [27] RASHIDI B, ZHAO Q.Output-related fault detection in non-stationary processes using constructive correlative-SAE and demoting correlative-DNN[J].Applied Soft Computing, 2022, 123:108898. [28] RAVI V, CHAGANTI R, ALAZAB M.Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network intrusion detection system[J].Computers and Electrical Engineering, 2022, 102:108156. [29] KONIKI R, AMPAPURAPU M D, KOLLU P K.An anomaly based network intrusion detection system using LSTM and GRU[C]//Proceedings of International Conference on Electronic Systems and Intelligent Computing.Washington D.C., USA:IEEE Press, 2022:79-84. [30] SAMRIYA J K, TIWARI R, CHENG X, et al.Network intrusion detection using ACO-DNN model with DVFS based energy optimization in cloud framework[J].Sustainable Computing:Informatics and Systems, 2022, 35:100746. |