作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (10): 1-12. doi: 10.19678/j.issn.1000-3428.0065984

• 热点与综述 • 上一篇    下一篇

基于深度学习的道路小目标检测综述

曹健1,2, 陈怡梅1,2,*, 李海生1,2, 蔡强1,2   

  1. 1. 北京工商大学 计算机学院, 北京 100048
    2. 食品安全大数据技术北京市重点实验室, 北京 100048
  • 收稿日期:2022-10-12 出版日期:2023-10-15 发布日期:2023-10-10
  • 通讯作者: 陈怡梅
  • 作者简介:

    曹健(1982-), 男, 副教授、博士, 主研方向为机器学习、图像处理

    李海生, 教授、博士

    蔡强, 教授、博士

  • 基金资助:
    国家自然科学基金(61877002); 国家自然科学基金(62277001); 北京市自然科学基金-丰台轨道交通前沿研究联合基金项目(L191009); 北京市教委-市自然科学基金委联合资助项目(KZ202110011017)

Survey of Small Target Detection on Roads Based on Deep Learning

Jian CAO1,2, Yimei CHEN1,2,*, Haisheng LI1,2, Qiang CAI1,2   

  1. 1. School of Computer Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
    2. Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing 100048, China
  • Received:2022-10-12 Online:2023-10-15 Published:2023-10-10
  • Contact: Yimei CHEN

摘要:

复杂道路场景下的小目标检测能够提高车辆对于周边环境的感知能力,是计算机视觉和智慧交通领域的重要研究方向。随着深度学习技术的发展,将深度学习方法与道路小目标检测相结合能够有效提高检测精度,使车辆快速对周边环境做出反应。从经典及最新的道路小目标检测的研究成果出发,给出小目标的两种定义方式,分析造成道路小目标检测困难的原因,阐述数据增强、多尺度策略、生成超分辨率细节信息、加强上下文信息联系、改进损失函数等5类基于深度学习的提高道路小目标检测精度的优化方法,总结归纳各类方法的核心思想及目前国内外最新的研究进展。介绍常用于道路小目标检测的大型和公共数据集,提供相应的用于评估小目标检测性能的指标,对比分析各类方法在不同数据集上的性能检测结果,指出道路小目标检测研究目前仍存在的问题,并结合这些问题从多个角度对其未来研究方向进行展望。

关键词: 小目标检测, 深度学习, 数据增强, 特征融合, 检测精度

Abstract:

Small target detection in complex road scenes can improve the vehicle's perception of the surrounding environment. Thus, it is an important research direction in the field of computer vision and intelligent transportation. With the development of deep learning technology, a combination of deep learning and small target detection on roads can effectively improve detection accuracy, allowing the vehicle to quickly respond to the surrounding environment. Starting with the latest classic research results in small target detection, this research provides two definitions for small targets and analyzes the reasons for the difficulty encountered in small target detection on roads. Subsequently, five types of optimization methods based on deep learning are expounded upon to improve detection accuracy of small targets on roads. The optimization methods include enhanced data, multi-scale strategy, generated Super-Resolution(SR) detail information, strengthened contextual information connection and improved loss function. The core ideas of various methods and the latest research progress at home and abroad are summarized. Large and public datasets commonly used in road small target detection are introduced along with corresponding indicators to evaluate the performance of small target detection. In comparing and analyzing the performance detection results of various methods on different datasets, this research presents the current research on road small target and associated problems, looking forward to future research directions from multiple perspectives.

Key words: small target detection, deep learning, data enhancement, feature fusion, detection accuracy