1 |
金沙沙, 龙伟, 胡灵犀, 等. 多目标检测与跟踪算法在智能交通监控系统中的研究进展. 控制与决策, 2023, 38 (4): 890- 901.
|
|
JIN S S , LONG W , HU L X , et al. Research progress of detection and multi-object tracking algorithm in intelligent traffic monitoring system. Control and Decision, 2023, 38 (4): 890- 901.
|
2 |
TIAN D X , LIN C M , ZHOU J S , et al. SA-YOLOv3:an efficient and accurate object detector using self-attention mechanism for autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (5): 4099- 4110.
doi: 10.1109/TITS.2020.3041278
|
3 |
张旭欣, 金婕. 基于量化神经网络的端到端车牌检测与识别系统. 传感器与微系统, 2020, 39 (12): 103- 105.
|
|
ZHANG X X , JIN J . End-to-end license plate detection and recognition system based on quantized neural network. Transducer and Microsystem Technologies, 2020, 39 (12): 103- 105.
|
4 |
王子晔, 苗夺谦, 赵才荣, 等. 基于多粒度特征的行人跟踪检测结合算法. 计算机研究与发展, 2020, 57 (5): 996- 1002.
URL
|
|
WANG Z Y , MIAO D Q , ZHAO C R , et al. A pedestrian tracking algorithm based on multi-granularity feature. Journal of Computer Research and Development, 2020, 57 (5): 996- 1002.
URL
|
5 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
URL
|
|
LI S J , GENG L L , WANG P . Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49 (4): 272- 280.
URL
|
6 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 740-755.
|
7 |
KISANTAL M, WOJNA Z, MURAWSKI J, et al. Augmentation for small object detection[C]//Proceedings of the 9th International Conference on Advances in Computing and Information Technology. [S. l. ]: AIRCC Publishing Corporation, 2019: 1-8.
|
8 |
WANG S H. An augmentation small object detection method based on NAS-FPN[C]//Proceedings of the 7th International Conference on Information Science and Control Engineering. Washington D.C., USA: IEEE Press, 2021: 213-218.
|
9 |
LI W J, TAN X F, WANG Z J. Small object detection of table tennis based on deep learning network[C]//Proceedings of International Conference on Computer Science and Management Technology. Washington D.C., USA: IEEE Press, 2021: 149-152.
|
10 |
刘素行, 吴媛, 张军军. 基于YOLOv3的交通场景目标检测方法. 国外电子测量技术, 2021, 40 (2): 116- 120.
|
|
LIU S X , WU Y , ZHANG J J . Traffic scene object detection method based on YOLOv3. Foreign Electronic Measurement Technology, 2021, 40 (2): 116- 120.
|
11 |
CHEN Y K, LI Y W, KONG T, et al. Scale-aware automatic augmentation for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 9558-9567.
|
12 |
TANG Y , LI B P , LIU M , et al. AutoPedestrian: an automatic data augmentation and loss function search scheme for pedestrian detection. IEEE Transactions on Image Processing, 2021, 30, 8483- 8496.
doi: 10.1109/TIP.2021.3115672
|
13 |
|
14 |
HAN B, SIM J, ADAM H. BranchOut: regularization for online ensemble tracking with convolutional neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 521-530.
|
15 |
YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2020: 6022-6031.
|
16 |
|
17 |
JOCHER G, STOKEN A, BOROVEC J. Ultralytics/Yolov5: v4.0—nn. SiLU activations weights & biases logging PyTorch hub integration[EB/OL]. [202309-12]. https://zenodo.org/record/4418161.
|
18 |
LI M X, GE H Y, WANG H X. IMG-CenterNet: an optimized algorithm based on CenterNet for pedestrian detection[C]//Proceedings of the 6th Information Technology and Mechatronics Engineering Conference. Washington D.C., USA: IEEE Press, 2022: 203-208.
|
19 |
DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2020: 6568-6577.
|
20 |
姜靓, 詹永照. 基于高斯金字塔与差分法的多目标检测和跟踪算法. 微电子学与计算机, 2011, 28 (11): 129-132, 136.
|
|
JIANG L , ZHAN Y Z . Multiple objects detection and tracking based on background subtraction and Gaussian pyramid. Microelectronics & Computer, 2011, 28 (11): 129-132, 136.
|
21 |
SINGH B, DAVIS L S. An analysis of scale invariance in object detection—SNIP[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 3578-3587.
|
22 |
|
23 |
LI X, LUO X G, HAO H J, et al. Pedestrian detection method based on multi-scale fusion inception-SSD Model[C]//Proceedings of the 9th Joint International Information Technology and Artificial Intelligence Conference. Washington D.C., USA: IEEE Press, 2021: 1549-1553.
|
24 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 936-944.
|
25 |
王程, 刘元盛, 刘圣杰. 基于改进YOLOv4的小目标行人检测算法. 计算机工程, 2023, 49 (2): 296-302, 313.
URL
|
|
WANG C , LIU Y S , LIU S J . Small-target pedestrian-detection algorithm based on improved YOLOv4. Computer Engineering, 2023, 49 (2): 296-302, 313.
URL
|
26 |
王飞, 王林, 张儒良, 等. 基于融合FPN和Faster R-CNN的行人检测算法. 数据采集与处理, 2019, 34 (3): 530- 537.
|
|
WANG F , WANG L , ZHANG R L , et al. Pedestrian detection algorithm based on fusion FPN and faster R-CNN. Journal of Data Acquisition and Processing, 2019, 34 (3): 530- 537.
|
27 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
28 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8759-8768.
|
29 |
GAN Y, XU W, SU J B. SFPN: semantic feature pyramid network for object detection[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 795-802.
|
30 |
LIU Z M, GAO G Y, SUN L, et al. IPG-Net: image pyramid guidance network for small object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2020: 4422-4430.
|
31 |
ZHAO G M, GE W F, YU Y Z. GraphFPN: graph feature pyramid network for object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2022: 2743-2752.
|
32 |
GOODFELLOW I , POUGET-ABADIE J , MIRZA M , et al. Generative adversarial networks. Communications of the ACM, 2020, 63 (11): 139- 144.
|
33 |
LI J N, LIANG X D, WEI Y C, et al. Perceptual generative adversarial networks for small object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 1951-1959.
|
34 |
BAI Y C , ZHANG Y Q , DING M L , et al. SOD-MTGAN: small object detection via multi-task generative adversarial network. Berlin, Germany: Springer International Publishing, 2018.
|
35 |
NOH J, BAE W, LEE W, et al. Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2020: 9724-9733.
|
36 |
PANG Y W , CAO J L , WANG J , et al. JCS-Net: joint classification and super-resolution network for small-scale pedestrian detection in surveillance images. IEEE Transactions on Information Forensics and Security, 2019, 14 (12): 3322- 3331.
|
37 |
HSU W Y , CHEN P C . Pedestrian detection using stationary wavelet dilated residual super-resolution. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1- 11.
|
38 |
CHEN X L, GUPTA A. Spatial memory for context reasoning in object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 4106-4116.
|
39 |
HU H, GU J Y, ZHANG Z, et al. Relation networks for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 3588-3597.
|
40 |
LIU Z X, ZHANG C Y, LUO Y, et al. Improving small-scale pedestrian detection using informed context[C]//Proceedings of IEEE Visual Communications and Image Processing. Washington D.C., USA: IEEE Press, 2020: 1-4.
|
41 |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 1724-1734.
|
42 |
LIANG X , ZHANG J , ZHUO L , et al. Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30 (6): 1758- 1770.
|
43 |
LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]//Proceedings of International Conference on Artificial Intelligence in Information and Communication. Washington D.C., USA: IEEE Press, 2021: 181-186.
|
44 |
NIE J , PANG Y W , ZHAO S J , et al. Efficient selective context network for accurate object detection. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (9): 3456- 3468.
|
45 |
郑秋梅, 王璐璐, 王风华. 基于改进卷积神经网络的交通场景小目标检测. 计算机工程, 2020, 46 (6): 26- 33.
URL
|
|
ZHENG Q M , WANG L L , WANG F H . Small object detection in traffic scene based on improved convolutional neural network. Computer Engineering, 2020, 46 (6): 26- 33.
URL
|
46 |
REN K K, ZHAO M H. Road target detection method based on improved tiny-YOLOv3[C]//Proceedings of the 5th International Conference on Electronics Technology. Washington D.C., USA: IEEE Press, 2022: 1102-1106.
|
47 |
KIM J U , KIM S T , LEE H J , et al. CUA loss: class uncertainty-aware gradient modulation for robust object detection. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (9): 3529- 3543.
|
48 |
SHUANG K , LYU Z H , LOO J , et al. Scale-balanced loss for object detection. Pattern Recognition, 2021, 117, 107997.
|
49 |
|
50 |
ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4203-4212.
|
51 |
窦允冲, 侯进, 曾雷鸣, 等. 基于反馈机制与空洞卷积的道路小目标检测网络. 计算机工程, 2023, 49 (1): 287- 294.
URL
|
|
DOU Y C , HOU J , ZENG L M , et al. Road small target detection network based on feedback mechanism and hole convolution. Computer Engineering, 2023, 49 (1): 287- 294.
URL
|
52 |
郭磊, 王邱龙, 薛伟, 等. 基于改进YOLOv5的小目标检测算法. 电子科技大学学报, 2022, 51 (2): 251- 258.
|
|
GUO L , WANG Q L , XUE W , et al. A small object detection algorithm based on improved YOLOv5. Journal of University of Electronic Science and Technology of China, 2022, 51 (2): 251- 258.
|
53 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 658-666.
|
54 |
YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York, USA: ACM Press, 2016: 516-520.
|
55 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 12993-13000.
|
56 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2012: 3354-3361.
|
57 |
YU F, CHEN H F, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 2633-2642.
|
58 |
HUANG X Y, CHENG X J, GENG Q C, et al. The ApolloScape dataset for autonomous driving[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2018: 1067-10676.
|
59 |
|
60 |
SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 2443-2451.
|
61 |
PHAM Q H, SEVESTRE P, PAHWA R S, et al. A*3D dataset: towards autonomous driving in challenging environments[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2020: 2267-2273.
|
62 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 11618-11628.
|
63 |
|