| 1 | 
																						 
											   LECUN Y ,  BENGIO Y ,  HINTON G E .  Deep learning. Nature, 2015, 521 (7553): 436- 444.  
											 												 
																									doi: 10.1038/nature14539    
																																															 											 | 
										
																													
																						| 2 | 
																						 
											   OTTER D W ,  MEDINA J R ,  KALITA J K .  A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (2): 604- 624.  
											 												 
																									doi: 10.1109/TNNLS.2020.2979670    
																																															 											 | 
										
																													
																						| 3 | 
																						 
											   BOU NASSIF A ,  SHAHIN I ,  ATTILI I , et al.  Speech recognition using deep neural networks: a systematic review. IEEE Access, 2019, 7, 19143- 19165.  
											 												 
																									doi: 10.1109/ACCESS.2019.2896880    
																																															 											 | 
										
																													
																						| 4 | 
																						 
											   KRIZHEVSKY A ,  SUTSKEVER I ,  HINTON G E .  ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.  
											 												 
																									doi: 10.1145/3065386    
																																															 											 | 
										
																													
																						| 5 | 
																						 
											  EYKHOLT K, EVTIMOV I, FERNANDES E, et al. Robust physical-world attacks on deep learning visual classification[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 1625-1634. 
											 											 | 
										
																													
																						| 6 | 
																						 
											  HAO S Y, HAO G. Research on OCT image processing based on deep learning[C]//Proceedings of the 10th International Conference on Electronics Information and Emergency Communication. Washington D.C., USA: IEEE Press, 2020: 208-212. 
											 											 | 
										
																													
																						| 7 | 
																						 
											  陈宇飞, 沈超, 王骞, 等.  人工智能系统安全与隐私风险. 计算机研究与发展, 2019, 56 (10): 2135- 2150.  
											 												 
																									doi: 10.7544/issn1000-1239.2019.20190415    
																																															 											 | 
										
																													
																						 | 
																						 
											   CHEN Y F ,  SHEN C ,  WANG Q , et al.  Security and privacy risks in artificial intelligence systems. Journal of Computer Research and Development, 2019, 56 (10): 2135- 2150.  
											 												 
																									doi: 10.7544/issn1000-1239.2019.20190415    
																																															 											 | 
										
																													
																						| 8 | 
																						 
											  纪守领, 杜天宇, 李进锋, 等.  机器学习模型安全与隐私研究综述. 软件学报, 2021, 32 (1): 41- 67.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   JI S L ,  DU T Y ,  LI J F , et al.  Security and privacy of machine learning models: a survey. Journal of Software, 2021, 32 (1): 41- 67.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 9 | 
																						 
											 
											 											 | 
										
																													
																						| 10 | 
																						 
											   AKHTAR N ,  MIAN A .  Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access, 2018, 6, 14410- 14430.  
											 												 
																									doi: 10.1109/ACCESS.2018.2807385    
																																															 											 | 
										
																													
																						| 11 | 
																						 
											  段广晗, 马春光, 宋蕾, 等.  深度学习中对抗样本的构造及防御研究. 网络与信息安全学报, 2020, 6 (2): 1- 11.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   DUAN G H ,  MA C G ,  SONG L , et al.  Research on the construction and defense of antagonistic samples in deep learning. Chinese Journal of Network and Information Security, 2020, 6 (2): 1- 11.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 12 | 
																						 
											 
											 											 | 
										
																													
																						| 13 | 
																						 
											  LIU J Y, ZHANG W M, ZHANG Y W, et al. Detection based defense against adversarial examples from the steganalysis point of view[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 4820-4829. 
											 											 | 
										
																													
																						| 14 | 
																						 
											  COHEN G, SAPIRO G, GIRYES R. Detecting adversarial samples using influence functions and nearest neighbors[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 14441-14450. 
											 											 | 
										
																													
																						| 15 | 
																						 
											  潘文雯, 王新宇, 宋明黎, 等.  对抗样本生成技术综述. 软件学报, 2020, 31 (1): 67- 81.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   PAN W W ,  WANG X Y ,  SONG M L , et al.  Survey on generating adversarial examples. Journal of Software, 2020, 31 (1): 67- 81.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 16 | 
																						 
											  张思思, 左信, 刘建伟.  深度学习中的对抗样本问题. 计算机学报, 2019, 42 (8): 1886- 1904.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   ZHANG S S ,  ZUO X ,  LIU J W .  The problem of the adversarial examples in deep learning. Chinese Journal of Computers, 2019, 42 (8): 1886- 1904.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 17 | 
																						 
											 
											 											 | 
										
																													
																						| 18 | 
																						 
											 
											 											 | 
										
																													
																						| 19 | 
																						 
											  CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of Symposium on Security and Privacy. Washington D.C., USA: IEEE Press, 2017: 39-57. 
											 											 | 
										
																													
																						| 20 | 
																						 
											  MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 2574-2582. 
											 											 | 
										
																													
																						| 21 | 
																						 
											  PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]//Proceedings of European Symposium on Security and Privacy. Berlin, Germany: Springer, 2016: 372-387. 
											 											 | 
										
																													
																						| 22 | 
																						 
											  PAPERNOT N, MCDANIEL P, WU X, et al. Distillation as a defense to adversarial perturbations against deep neural networks[C]//Proceedings of Symposium on Security and Privacy. Washington D.C., USA: IEEE Press, 2016: 582-597. 
											 											 | 
										
																													
																						| 23 | 
																						 
											  PRAKASH A, MORAN N, GARBER S, et al. Deflecting adversarial attacks with pixel deflection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8571-8580. 
											 											 | 
										
																													
																						| 24 | 
																						 
											 
											 											 | 
										
																													
																						| 25 | 
																						 
											  ZUO F, ZENG Q. Exploiting the sensitivity of L2 adversarial examples to erase-and-restore[C]//Proceedings of ACM Asia Conference on Computer and Communications Security. New York, USA: ACM Press, 2021: 40-51. 
											 											 | 
										
																													
																						| 26 | 
																						 
											  XU W L, EVANS D, QI Y J. Feature squeezing: detecting adversarial examples in deep neural networks[C]//Proceedings of Network and Distributed System Security Symposium. Washington D.C., USA: IEEE Press, 2018: 1-10. 
											 											 | 
										
																													
																						| 27 | 
																						 
											  MASCI J, MEIER U, CIREŞAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]//Proceedings of International Conference on Artificial Neural Networks. Berlin, Germany: Springer, 2011: 52-59. 
											 											 | 
										
																													
																						| 28 | 
																						 
											  VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM Press, 2008: 1096-1103. 
											 											 | 
										
																													
																						| 29 | 
																						 
											 
											 											 | 
										
																													
																						| 30 | 
																						 
											 
											 											 | 
										
																													
																						| 31 | 
																						 
											  MENG D Y, CHEN H. MagNet: a two-pronged defense against adversarial examples[C]//Proceedings of ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2017: 135-147. 
											 											 |