1 |
BOUTELL M R, LUO J B, SHEN X P, et al. Learning multi-label scene classification. Pattern Recognition, 2004, 37(9): 1757- 1771.
doi: 10.1016/j.patcog.2004.03.009
|
2 |
蔡亚萍, 杨明. 一种利用局部标记相关性的多标记特征选择算法. 南京大学学报(自然科学), 2016, 52(4): 693- 704.
URL
|
|
CAI Y P, YANG M. A multi-label feature selection algorithm by exploiting label correlations locally. Journal of Nanjing University (Natural Science), 2016, 52(4): 693- 704.
URL
|
3 |
朱赛赛, 贾修一, 李泽超. 一种基于全局和局部标记相关性的多标记分类算法. 电子学报, 2020, 48(12): 2345- 2351.
URL
|
|
ZHU S S, JIA X Y, LI Z C. Exploiting global and loca label correlations for multi-label classification. Acta Electronica Sinica, 2020, 48(12): 2345- 2351.
URL
|
4 |
|
5 |
CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5172-5181.
|
6 |
CHEN T S, XU M X, HUI X L, et al. Learning semantic-specific graph representation for multi-label image recognition[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 522-531.
|
7 |
WANG Z X, CHEN T S, LI G B, et al. Multi-label image recognition by recurrently discovering attentional regions[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 464-472.
|
8 |
YOU R C, GUO Z Y, CUI L, et al. Cross-modality attention with semantic graph embedding for multi-label classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12709- 12716.
doi: 10.1609/aaai.v34i07.6964
|
9 |
|
10 |
AKATA Z, PERRONNIN F, HARCHAOUI Z, et al. Label-embedding for attribute-based classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2013: 819-826.
|
11 |
LI Y, ZHANG J G, ZHANG J G, et al. Discriminative learning of latent features for zero-shot recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7463-7471.
|
12 |
魏宏喜, 张越. 基于生成对抗网络的零样本图像分类. 北京航空航天大学学报, 2019, 45(12): 2345- 2350.
URL
|
|
WEI H X, ZHANG Y. Zero-shot image classification based on generative adversarial network. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2345- 2350.
URL
|
13 |
|
14 |
LEE C W, FANG W, YEH C K, et al. Multi-label zero-shot learning with structured knowledge graphs[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1576-1585.
|
15 |
GOA B, GYAB C, CD D, et al. Multi-label zero-shot learning with graph convolutional networks. Neural Networks, 2020, 132, 333- 341.
doi: 10.1016/j.neunet.2020.09.010
|
16 |
|
17 |
|
18 |
HUYNH D, ELHAMIFAR E. A shared multi-attention framework for multi-label zero-shot learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 8773-8783.
|
19 |
NARAYAN S, GUPTA A, KHAN S, et al. Discriminative region-based multi-label zero-shot learning[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 8711-8720.
|
20 |
ZHANG Y, XIANG T, HOSPEDALES T M, et al. Deep mutual learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4320-4328.
|
21 |
CHUA T S, TANG J H, HONG R C, et al. NUS-WIDE: a real-world web image database from National University of Singapore[C]//Proceedings of the ACM International Conference on Image and Video Retrieval. New York, USA: ACM Press, 2009: 1-9.
|
22 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]///Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 740-755.
|
23 |
BEN-COHEN A, ZAMIR N, BEN BARUCH E, et al. Semantic diversity learning for zero-shot multi-label classification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 620-630.
|
24 |
ZHANG Y, GONG B Q, SHAH M. Fast zero-shot image tagging[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 5985-5994.
|
25 |
PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 1532-1543.
|
26 |
NOROUZI M, MIKOLOV T, BENGIO S, et al. Zero-shot learning by convex combination of semantic embeddings[EB/OL]. [2022-08-10]. https://arxiv.org/abs/1312.5650.
|
27 |
AKATA Z, PERRONNIN F, HARCHAOUI Z, et al. Label-embedding for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(7): 1425- 1438.
|
28 |
RAHMAN S, KHAN S, BARNES N. Deep0Tag: deep multiple instance learning for zero-shot image tagging. IEEE Transactions on Multimedia, 2020, 22(1): 242- 255.
|