[1] UNNISA A N,YERVA M,M Z K.Review on Intrusion Detection System(IDS) for network security using machine learning algorithms[J].International Research Journal on Advanced Science Hub,2022,4(3):67-74. [2] JEWELL B,BEAVER J.Host-based data exfiltration detection via system call sequences[C]//Proceedings of the 6th International Conference on Information Warfare and Security.Washington D.C.,USA:IEEE Press,2011:134-142. [3] HOFMEYR S A,FORREST S,SOMAYAJI A.Intrusion detection using sequences of system calls[J].Journal of Computer Security,1998,6(3):151-180. [4] XIE M,HU J K.Evaluating host-based anomaly detection systems:a preliminary analysis of ADFA-LD[C]//Proceedings of the 6th International Congress on Image and Signal Processing.Washington D.C.,USA:IEEE Press,2014:1711-1716. [5] XIE M,HU J K,SLAY J.Evaluating host-based anomaly detection systems:application of the one-class SVM algorithm to ADFA-LD[C]//Proceedings of the 11th International Conference on Fuzzy Systems and Knowledge Discovery.Washington D.C.,USA:IEEE Press,2014:978-982. [6] XIE M,HU J K,YU X H,et al.Evaluating host-based anomaly detection systems:application of the frequency-based algorithms to ADFA-LD[C]//Proceedings of International Conference on Network and System Security.Berlin,Germany:Springer,2014:542-549. [7] HAIDER W,HU J K,XIE M.Towards reliable data feature retrieval and decision engine in host-based anomaly detection systems[C]//Proceedings of the 10th IEEE Conference on Industrial Electronics and Applications.Washington D.C.,USA:IEEE Press,2015:513-517. [8] KOLOSNJAJI B,ZARRAS A,WEBSTER G,et al.Deep learning for classification of malware system call sequences[C]//Proceedings of the 29th Australasian Joint Conference on Artificial Intelligence.Berlin,Germany:Springer,2016:137-149. [9] CHAWLA A,LEE B,FALLON S,et al.Host based intrusion detection system with combined CNN/RNN model[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin,Germany:Springer,2018:149-158. [10] ZHANG Y,LUO S,PAN L,et al.Syscall-BSEM:behavioral semantics enhancement method of system call sequence for high accurate and robust host intrusion detection[J].Future Generation Computer Systems,2021,125:112-126. [11] RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[EB/OL].[2022-05-10].https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035. [12] FORREST S,HOFMEYR S A,SOMAYAJI A,et al.A sense of self for UNIX processes[C]//Proceedings of 1996 IEEE Symposium on Security and Privacy.Washington D.C.,USA:IEEE Press,2002:120-128. [13] BROWN P,BROWN A,GUPTA M,et al.Online malware classification with system-wide system calls in cloud IaaS[C]//Proceedings of the 23rd IEEE International Conference on Information Reuse and Integration for Data Science.Washington D.C.,USA:IEEE Press,2022:146-151. [14] WUNDERLICH S,RING M,LANDES D,et al.The impact of different system call representations on intrusion detection[J].Logic Journal of the IGPL,2022,30(2):239-251. [15] XIE W Q,XU S W,ZOU S H,et al.A system-call behavior language system for malware detection using a sensitivity-based LSTM model[C]//Proceedings of the 3rd International Conference on Computer Science and Software Engineering.New York,USA:ACM Press,2020:112-118. [16] MELVIN A A R,KATHRINE G J W,PASUPATHI S,et al.An AI powered system call analysis with bag of word approaches for the detection of intrusions and malware in Australian Defence Force Academy and virtual machine monitor malware attack data set[J].Expert Systems,2022:e13029. [17] CASOLARE R,DE DOMINICIS C,IADAROLA G,et al.Dynamic mobile malware detection through system call-based image representation[J].Journal of Wireless Mobile Networks,Ubiquitous Computing,and Dependable Applications,2021,12(1):44-63. [18] MORA-GIMENO F J,MORA-MORA H,VOLCKAERT B,et al.Intrusion detection system based on integrated system calls graph and neural networks[J].IEEE Access,2021,9:9822-9833. [19] MANOHARAN S,SUGUMARAN P,KUMAR K.Multichannel based IoT malware detection system using system calls and opcode sequences[J].International Arab Journal of Information Technology,2022,19(2):261-271. [20] IACOVAZZI A,RAZA S.Ensemble of random and isolation forests for graph-based intrusion detection in containers[C]//Proceedings of IEEE International Conference on Cyber Security and Resilience.Washington D.C.,USA:IEEE Press,2022:30-37. [21] WANG Y L,CHEN X S,WANG Q X,et al.Unsupervised anomaly detection for container cloud via BILSTM-based variational auto-encoder[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Washington D.C.,USA:IEEE Press,2022:3024-3028. [22] LV S H,WANG J,YANG Y Q,et al.Intrusion prediction with system-call sequence-to-sequence model[J].IEEE Access,2018,6:71413-71421. [23] 陈兴蜀,金逸灵,王玉龙,等.基于长短期记忆神经网络的容器内进程异常行为检测[J].电子学报,2021,49(1):149-156.CHEN X S,JIN Y L,WANG Y L,et al.Anomaly detection of processes behavior in container based on LSTM neural network[J].Acta Electronica Sinica,2021,49(1):149-156.(in Chinese) [24] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2017:6000-6010. [25] 李橙,罗森林.基于系统调用行为相似性聚类的主机入侵检测方法研究[J].信息安全研究,2021,7(9):828-835.LI C,LUO S L.Research on host intrusion fetection method based on system call behavior similarity clustering[J].Journal of Information Security Research,2021,7(9):828-835.(in Chinese) |