1 |
NAYAR S K, NARASIMHAN S G. Vision in bad weather[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2002: 820-827.
|
2 |
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2341- 2353.
doi: 10.1109/TPAMI.2010.168
|
3 |
ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2015, 24 (11): 3522- 3533.
doi: 10.1109/TIP.2015.2446191
|
4 |
赵慧, 魏伟波, 潘振宽, 等. 基于暗原色先验与变分正则化的图像去雾研究. 计算机工程, 2021, 47 (10): 214- 220.
URL
|
|
ZHAO H, WEI W B, PAN Z K, et al. Research on image dehazing based on dark channel prior and variational regularization. Computer Engineering, 2021, 47 (10): 214- 220.
URL
|
5 |
CAI B L, XU X M, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal. IEEE Transactions on Image Processing, 2016, 25 (11): 5187- 5198.
doi: 10.1109/TIP.2016.2598681
|
6 |
REN W Q, PAN J S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges. International Journal of Computer Vision, 2020, 128 (1): 240- 259.
doi: 10.1007/s11263-019-01235-8
|
7 |
LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 4780-4788.
|
8 |
QIN X, WANG Z L, BAI Y C, et al. FFA-Net: feature fusion attention network for single image dehazing. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 11908- 11915.
doi: 10.1609/aaai.v34i07.6865
|
9 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2022-06-10]. https://arxiv.org/abs/2010.11929.
|
10 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical Vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 9992-10002.
|
11 |
|
12 |
LI X, WANG W H, HU X L, et al. Selective kernel networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 510-519.
|
13 |
|
14 |
|
15 |
JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 694-711.
|
16 |
RAD M S, BOZORGTABAR B, MARTI U V, et al. SROBB: targeted perceptual loss for single image super-resolution[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 2710-2719.
|
17 |
KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 18661-18673.
|
18 |
CHOI H, SOM A, TURAGA P. AMC-Loss: angular margin contrastive loss for improved explainability in image classification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3659-3666.
|
19 |
XIE E Z, DING J, WANG W H, et al. DetCo: unsupervised contrastive learning for object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 8372-8381.
|
20 |
SUN B, LI B H, CAI S C, et al. FSCE: few-shot object detection via contrastive proposal encoding[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 7348-7358.
|
21 |
WANG X L, ZHANG R F, SHEN C H, et al. Dense contrastive learning for self-supervised visual pre-training[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 3023-3032.
|
22 |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9726-9735.
|
23 |
WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3733-3742.
|
24 |
WANG L G, WANG Y Q, DONG X Y, et al. Unsupervised degradation representation learning for blind super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10576-10585.
|
25 |
ZOU Y H, FU Y. Estimating fine-grained noise model via contrastive learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 12672-12681.
|
26 |
MO Y Z, LI C F, ZHENG Y H, et al. DCA-CycleGAN: unsupervised single image dehazing using dark channel attention optimized CycleGAN. Journal of Visual Communication and Image Representation, 2022, 82, 103431.
doi: 10.1016/j.jvcir.2021.103431
|