| 1 | 钱政, 裴岩, 曹利宵, 等.  风电功率预测方法综述. 高电压技术, 2016, 42 (4): 1047- 1060. | 
																													
																						|  |  QIAN Z ,  PEI Y ,  CAO L X , et al.  Review of wind power forecasting method. High Voltage Engineering, 2016, 42 (4): 1047- 1060. | 
																													
																						| 2 | 廖雪超, 伍杰平, 陈才圣.  结合注意力机制与LSTM的短期风电功率预测模型. 计算机工程, 2022, 48 (9): 286-297, 304.  URL
 | 
																													
																						|  |  LIAO X C ,  WU J P ,  CHEN C S .  Short-term wind power prediction model combining attention mechanism and LSTM. Computer Engineering, 2022, 48 (9): 286-297, 304.  URL
 | 
																													
																						| 3 |  WANG G ,  JIA R ,  LIU J H , et al.  A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning. Renewable Energy, 2020, 145, 2426- 2434.  doi: 10.1016/j.renene.2019.07.166
 | 
																													
																						| 4 | 唐新姿, 顾能伟, 黄轩晴, 等.  风电功率短期预测技术研究进展. 机械工程学报, 2022, 58 (12): 213- 236. | 
																													
																						|  |  TANG X Z ,  GU N W ,  HUANG X Q , et al.  Progress on short term wind power forecasting technology. Journal of Mechanical Engineering, 2022, 58 (12): 213- 236. | 
																													
																						| 5 | 赵凌云, 刘友波, 沈晓东, 等.  基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型. 电力系统保护与控制, 2022, 50 (1): 42- 50. | 
																													
																						|  |  ZHAO L Y ,  LIU Y B ,  SHEN X D , et al.  Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network. Power System Protection and Control, 2022, 50 (1): 42- 50. | 
																													
																						| 6 | 殷豪, 董朕, 孟安波.  基于VMD-SE-IPSO-BNN的超短期风电功率预测. 电测与仪表, 2018, 55 (2): 45- 51. | 
																													
																						|  |  YIN H ,  DONG Z ,  MENG A B .  Ultra short-term wind power forecasting based on VMD-SE-IPSO-BNN. Electrical Measurement & Instrumentation, 2018, 55 (2): 45- 51. | 
																													
																						| 7 | 王晓兰, 李辉.  基于EMD分解的风电场风速和输出功率年度预测. 太阳能学报, 2011, 32 (3): 301- 306. | 
																													
																						|  |  WANG X L ,  LI H .  Annual forecasting of wind speed and power in wind farm based on EMD. Acta Energiae Solaris Sinica, 2011, 32 (3): 301- 306. | 
																													
																						| 8 | 王世谦, 苏娟, 杜松怀.  基于小波变换和神经网络的短期风电功率预测方法. 农业工程学报, 2010, 26 (S2): 125- 129. | 
																													
																						|  |  WANG S Q ,  SU J ,  DU S H .  A method of short-term wind power forecast based on wavelet transform and neural network. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26 (S2): 125- 129. | 
																													
																						| 9 | 赵征, 汪向硕.  基于CEEMD和改进时间序列模型的超短期风功率多步预测. 太阳能学报, 2020, 41 (7): 352- 358. | 
																													
																						|  |  ZHAO Z ,  WANG X S .  Ultra-short-term multi-step wind power prediction based on ceemd and improved time series model. Acta Energiae Solaris Sinica, 2020, 41 (7): 352- 358. | 
																													
																						| 10 | 周盛山, 汤占军, 王金轩, 等.  EEMD和CNN-XGBoost在风电功率短期预测的应用研究. 电子测量技术, 2020, 43 (22): 55- 61. | 
																													
																						|  |  ZHOU S S ,  TANG Z J ,  WANG J X , et al.  Application of EEMD and CNN-XGBoost in short-term wind power prediction. Electronic Measurement Technology, 2020, 43 (22): 55- 61. | 
																													
																						| 11 | 丁婷婷, 杨明, 于一潇, 等.  基于误差修正的短期风电功率集成预测方法. 高电压技术, 2022, 48 (2): 488- 496. | 
																													
																						|  |  DING T T ,  YANG M ,  YU Y X , et al.  Short-term wind power integration prediction method based on error correction. High Voltage Engineering, 2022, 48 (2): 488- 496. | 
																													
																						| 12 | 周洪煜, 曾济贫, 王照阳, 等.  基于混沌DNA遗传算法与PSO组合优化的RNN短期风电功率预测. 电力系统保护与控制, 2013, 41 (2): 144- 149. | 
																													
																						|  |  ZHOU H Y ,  ZENG J P ,  WANG Z Y , et al.  Ridgelet neural network model for short-term wind power forecasting based on the combination of chaos DNA genetic and particle swarm optimization algorithm. Power System Protection and Control, 2013, 41 (2): 144- 149. | 
																													
																						| 13 | 朱乔木, 李弘毅, 王子琪, 等.  基于长短期记忆网络的风电场发电功率超短期预测. 电网技术, 2017, 41 (12): 3797- 3802. | 
																													
																						|  |  ZHU Q M ,  LI H Y ,  WANG Z Q , et al.  Short-term wind power forecasting based on LSTM. Power System Technology, 2017, 41 (12): 3797- 3802. | 
																													
																						| 14 | 高鹭, 孔繁苗, 张飞, 等.  基于IPSO-BiLSTM-AM模型的超短期风电功率预测方法. 智慧电力, 2022, 50 (4): 27- 34. | 
																													
																						|  |  GAO L ,  KONG F M ,  ZHANG F , et al.  Ultra short-term wind power prediction method based on IPSO-BiLSTM-AM model. Smart Power, 2022, 50 (4): 27- 34. | 
																													
																						| 15 |  SHAHID F ,  ZAMEER A ,  MUNEEB M .  A novel genetic LSTM model for wind power forecast. Energy, 2021, 223, 120069. | 
																													
																						| 16 |  CHEN Y F ,  ZHAO H ,  ZHOU R , et al.  CNN-BiLSTM short-term wind power forecasting method based on feature selection. IEEE Journal of Radio Frequency Identification, 2022, 6, 922- 927. | 
																													
																						| 17 | 陈申, 叶小岭, 熊雄, 等.  基于天鹰优化算法的短期风电功率区间预测. 重庆理工大学学报, 2023, 37 (8): 304- 314. | 
																													
																						| 18 |  DEVI A S ,  MARAGATHAM G ,  BOOPATHI K , et al.  RETRACTED ARTICLE: hourly day-ahead wind powerforecasting with the EEMD-CSO-LSTM-EFG deep learning technique. Soft Computing, 2020, 24 (16): 12391- 12411. | 
																													
																						| 19 | YANG X S, DEB S. Cuckoo search via Lévy flights[C]//Proceedings of the World Congress on Nature & Biologically Inspired Computing(NaBIC). Washington D. C., USA: IEEE Press, 2009: 210-214. | 
																													
																						| 20 |  DING Y F ,  CHEN Z J ,  ZHANG H W , et al.  A short-term wind power prediction model based on CEEMD and WOA-KELM. Renewable Energy, 2022, 189, 188- 198.  URL
 | 
																													
																						| 21 |  MIRJALILI S ,  LEWIS A .  The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67. | 
																													
																						| 22 | 武新章, 梁祥宇, 朱虹谕, 等.  基于CEEMDAN-GRA-PCC-ATCN的短期风电功率预测. 山东大学学报(工学版), 2022, 52 (6): 146- 156. | 
																													
																						|  |  WU X Z ,  LIANG X Y ,  ZHU H Y , et al.  Short-term wind power prediction based on CEEMDAN-GRA-PCC-ATCN. Journal of Shandong University (Engineering Science), 2022, 52 (6): 146- 156. | 
																													
																						| 23 |  XUE J K ,  SHEN B .  Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. The Journal of Supercomputing, 2023, 79 (7): 7305- 7336. | 
																													
																						| 24 | LI J T, GENG D, ZHANG P, et al. Ultra-short term wind power forecasting based on LSTM neural network[C]//Proceedings of the IEEE 3rd International Electrical and Energy Conference(CIEEC). Washington D. C., USA: IEEE Press, 2019: 1815-1818. | 
																													
																						| 25 | 魏鹏飞, 樊小朝, 史瑞静, 等.  基于改进麻雀搜索算法优化支持向量机的短期光伏发电功率预测. 热力发电, 2021, 50 (12): 74- 79. | 
																													
																						|  |  WEI P F ,  FAN X C ,  SHI R J , et al.  Short-term photovoltaic power generation forecast based on improved sparrow search algorithm optimized support vector machine. Thermal Power Generation, 2021, 50 (12): 74- 79. | 
																													
																						| 26 | 王金锋, 杨宇琦, 温栋, 等.  基于GA-BP和RBF的风力发电时间序列混沌预测组合模型. 电网与清洁能源, 2022, 38 (11): 117- 125. | 
																													
																						|  |  WANG J F ,  YANG Y Q ,  WEN D , et al.  A combined model of chaos prediction of wind power generation time series based on GA-BP and RBF. Power System and Clean Energy, 2022, 38 (11): 117- 125. |