1 |
ZHANG K H , WU Y , DONG M L , et al. Deep object co-segmentation and co-saliency detection via high-order spatial-semantic network modulation. IEEE Transactions on Multimedia, 2023, 25, 5733- 5746.
doi: 10.1109/TMM.2022.3198848
|
2 |
张磊, 王小龙, 刘畅. 联合显著性与MRF的SAR建筑物分割算法. 计算机工程, 2022, 48 (4): 284-291, 298.
URL
|
|
ZHANG L , WANG X L , LIU C . SAR building segmentation algorithmcombining saliency and MRF. Computer Engineering, 2022, 48 (4): 284-291, 298.
URL
|
3 |
CHENG M M , MITRA N J , HUANG X L , et al. SalientShape: group saliency in image collections. The Visual Computer, 2014, 30 (4): 443- 453.
doi: 10.1007/s00371-013-0867-4
|
4 |
何悦, 陈广胜, 景维鹏, 等. 基于深度多相似性哈希方法的遥感图像检索. 计算机工程, 2023, 49 (2): 206- 212.
URL
|
|
HE Y , CHEN G S , JING W P , et al. Remote sensing image retrieval based on deep multi-similarity hashing method. Computer Engineering, 2023, 49 (2): 206- 212.
URL
|
5 |
惠子薇, 何坤, 冯犇, 等. 基于视觉特性的图像质量评价. 计算机工程, 2023, 49 (7): 189- 195.
URL
|
|
HUI Z W , HE K , FENG B , et al. Image quality assessment based on visual characteristics. Computer Engineering, 2023, 49 (7): 189- 195.
URL
|
6 |
WANG X C , LIANG X H , YANG B L , et al. No-reference synthetic image quality assessment with convolutional neural network and local image saliency. Computational Visual Media, 2019, 5 (2): 193- 208.
doi: 10.1007/s41095-019-0131-6
|
7 |
TSAI C C , LI W Z , HSU K J , et al. Image co-saliency detection and co-segmentation via progressive joint optimization. IEEE Transactions on Image Processing, 2019, 28 (1): 56- 71.
doi: 10.1109/TIP.2018.2861217
|
8 |
CHANG K Y, LIU T L, LAI S H. From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2011: 2129-2136.
|
9 |
FU H Z , CAO X C , TU Z W . Cluster-based co-saliency detection. IEEE Transactions on Image Processing, 2013, 22 (10): 3766- 3778.
doi: 10.1109/TIP.2013.2260166
|
10 |
HAN J W , CHENG G , LI Z P , et al. A unified metric learning-based framework for co-saliency detection. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28 (10): 2473- 2483.
doi: 10.1109/TCSVT.2017.2706264
|
11 |
LI Y J , FU K R , LIU Z , et al. Efficient saliency-model-guided visual co-saliency detection. IEEE Signal Processing Letters, 2015, 22 (5): 588- 592.
doi: 10.1109/LSP.2014.2364896
|
12 |
CAO X C , TAO Z Q , ZHANG B , et al. Self-adaptively weighted co-saliency detection via rank constraint. IEEE Transactions on Image Processing, 2014, 23 (9): 4175- 4186.
|
13 |
LI H L , NGAN K N . A co-saliency model of image pairs. IEEE Transactions on Image Processing, 2011, 20 (12): 3365- 3375.
doi: 10.1109/TIP.2011.2156803
|
14 |
ZHANG Q J, CONG R M, HOU J H, et al. CoADNet: collaborative aggregation-and-distribution networks for co-salient object detection[EB/OL]. [2024-06-14]. http://arxiv.org/abs/2011.04887.
|
15 |
|
16 |
LI L, HAN J W, ZHANG N, et al. Discriminative co-saliency and background mining Transformer for co-salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 7247-7256.
|
17 |
SU Y K , DENG J L , SUN R Z , et al. A unified Transformer framework for group-based segmentation: co-segmentation, co-saliency detection and video salient object detection. IEEE Transactions on Multimedia, 2024, 26, 313- 325.
doi: 10.1109/TMM.2023.3264883
|
18 |
FAN Q, FAN D P, FU H Z, et al. Group collaborative learning for co-salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 12283-12293.
|
19 |
WU Y, ZHANG H, LIANG L Y, et al. Group-wise co-salient object detection with Siamese Transformers via Brownian distance covariance matching[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2023: 1-5.
|
20 |
YU S Y, XIAO J M, ZHANG B F, et al. Democracy does matter: comprehensive feature mining for co-salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 969-978.
|
21 |
WU Y, SONG H H, LIU B, et al. Co-salient object detection with uncertainty-aware group exchange-masking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 19639-19648.
|
22 |
ZHENG P , FU H Z , FAN D P , et al. GCoNet+: a stronger group collaborative co-salient object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (9): 10929- 10946.
doi: 10.1109/TPAMI.2023.3264571
|
23 |
LI C L, XU H Y, TIAN J F, et al. mPlug: effective and efficient vision-language learning by cross-modal skip-connections[EB/OL]. [2024-06-14]. http://arxiv.org/abs/2205.12005.
|
24 |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2023: 3992-4003.
|
25 |
GABOR D . Theory ofcommunication. part 1: the analysis of information. Journal of the Institution of Electrical Engineers, 1946, 93 (26): 429- 441.
|
26 |
LOWE D G . Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
27 |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of International Conference on Machine Learning. New York, USA: PMLR Press, 2021: 8748-8763.
|
28 |
|
29 |
REN T H, LIU S L, ZENG A L, et al. Grounded SAM: assembling open-world models for diverse visual tasks[EB/OL]. [2024-06-14]. http://arxiv.org/abs/2401.14159.
|
30 |
|
31 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2024-06-14]. http://arxiv.org/abs/1810.04805.
|
32 |
ZHANG Z, JIN W D, XU J, et al. Gradient-induced co-saliency detection[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 455-472.
|
33 |
FAN D P , LI T P , LIN Z , et al. Re-thinking co-salient object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (8): 4339- 4354.
|
34 |
ZHANG D W , HAN J W , LI C , et al. Detection of co-salient objects by looking deep and wide. International Journal of Computer Vision, 2016, 120 (2): 215- 232.
doi: 10.1007/s11263-016-0907-4
|
35 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 740-755.
|
36 |
RUSSAKOVSKY O , DENG J , SU H , et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115 (3): 211- 252.
doi: 10.1007/s11263-015-0816-y
|
37 |
FAN D P, CHENG M M, LIU Y, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 4558-4567.
|
38 |
FAN D P, GONG C, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: International Joint Conferences on Artificial Intelligence Organization, 2018: 698-704.
|
39 |
ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2009: 1597-1604.
|
40 |
PERAZZI F, KRÄHENBÜHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2012: 733-740.
|
41 |
WANG C, ZHA Z J, LIU D, et al. Robust deep co-saliency detection with group semantic[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 8917-8924.
|
42 |
|
43 |
ZHOU C, LI X T, LOY C C, et al. EdgeSAM: prompt-in-the-loop distillation for on-device deployment of SAM[EB/OL]. [2024-06-14]. http://arxiv.org/abs/2312.06660.
|
44 |
|
45 |
|
46 |
XIAO H K, TANG L, LI B, et al. Zero-shot co-salient object detection framework[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2024: 4010-4014.
|