作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2018, Vol. 44 ›› Issue (7): 183-187,192. doi: 10.19678/j.issn.1000-3428.0049398

• 人工智能及识别技术 • 上一篇    下一篇

面向机器阅读理解的语句填补答案选择方法

徐丽丽 1a,李茹 1a,1b,2,李月香 1a,郭少茹 1a,谭红叶 1a,1b   

  1. 1.山西大学 a.计算机与信息技术学院; b.计算智能与中文信息处理教育部重点实验室,太原 030006; 2.山西省大数据挖掘与智能技术协同创新中心,太原 030006
  • 收稿日期:2017-11-22 出版日期:2018-07-15 发布日期:2018-07-15
  • 作者简介:徐丽丽(1991—),女,硕士研究生,主研方向为自然语言处理;李茹,教授、博士;李月香,教授;郭少茹,博士研究生;谭红叶,副教授、博士。
  • 基金资助:

    国家高技术研究发展计划项目(2015AA015407);国家自然科学基金(61772324, 61673248)。

Answer Selection Method of Sentence Filling for Machine Reading Comprehension

XU Lili  1a,LI Ru  1a,1b,2,LI Yuexiang  1a,GUO Shaoru  1a,TAN Hongye  1a,1b   

  1. 1a.School of Computer and Information Technology; 1b.Key Laboratory of Ministry of Education for Computation Intelligence and Chinese Information Processing,Shanxi University,Taiyuan 030006,China; 2.Collaborative Innovation Center of Big Data Mining and Intelligent Technology in Shanxi Province,Taiyuan 030006,China
  • Received:2017-11-22 Online:2018-07-15 Published:2018-07-15

摘要:

语句填补类选择题是高考语文阅读理解中题型之一,是自然语言处理研究的热点,其中题干信息和答案的关系非常隐蔽,无法从篇章中直接选出答案。为此,针对语句填补选择题提出基于长短时记忆网络模型的语句填补答案选择方法。使用神经网络中的LSTM模型对篇章中每个句子和选项进行分布式表示,通过向量直接拼接和按位相乘融合篇章和选项之间的语义信息,实现对语句填补类选择题的解答。在新闻语料和全国各省近10年高考题和模拟题上的实验结果,验证了该方法的有效性。

关键词: 机器阅读理解, 神经网络, 语句填补, 分布式语句表示, 答案选择

Abstract:

The sentence filling is one of the important choice-questions in the reading comprehension based on the college entrance examination,and has also become a hot research topic in the field of natural language processing.Due to the relationship between the information and the options is very subtle,the answer can not be drawn directly form text.Aiming at this problem,this paper applies Long Short-Term Memory(LSTM) model of deep learning to answer the choice-questions of sentence filing.The models carry out the distributed sentence representation for every sentence of document and option,by two means of concatenate and multiply which efficiently combine the semantic information of discourse and options.Experiments are carried out on news corpus and college entrance examination Zhenti and Moniti in the recent ten years,which have verified the validity of the proposed method.

Key words: machine Reading Comprehension(RC), neural network, sentence filling, distributed sentence representation, answer selection

中图分类号: