[1]PANG B,LEE L.Opinion mining and sentiment analysis[J].Foundations and Trends in Information Retrieval,2008,2(1/2):102-135.
[2]王仲远,程健鹏,王海勋,等.短文本理解研究[J].计算机研究与发展,2016,53(2):262-269.
[3]PONTIKI M,GALANIS D,PAVLOPOULOS J,et al.SemEval-2014 task 4:aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation.Stroudsburg,USA:ACL Press,2014:27-35.
[4]BOIY E,MOENS M F.A machine learning approach to sentiment analysis in multilingual Web texts[J].Information Retrieval,2009,12(5):526-558.
[5]余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804.
[6]王盛玉,曾碧卿,胡翩翩.基于卷积神经网络参数优化的中文情感分析[J].计算机工程,2017,43(8):200-207,214.
[7]KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,USA:ACL Press,2014:1746-1751.
[8]ZHOU P,SHI W,TIAN J,et al.Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,USA:ACL Press,2016:207-212.
[9]TANG D,QIN B,LIU T.Aspect level sentiment classification with deep memory network[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,USA:ACL Press,2016:214-224.
[10]梁斌,刘全,徐进,等.基于多注意力卷积神经网络的特定目标情感分析[J].计算机研究与发展,2017,54(8):1724-1735.
[11]HU M,LIU B.Mining and summarizing customer reviews[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM,2004:168-177.
[12]HU M,LIU B.Mining opinion features in customer reviews[C]//Proceedings of the 19th National Conference on Artifical Intelligence.Palo Alto,USA:AAAI Press,2004:755-760.
[13]KIRITCHENKO S,ZHU X,CHERRY C,et al.NRC-Canada-2014:detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Semantic Evaluation.Stroudsburg,USA:ACL Press,2014:437-442.
[14]NGUYEN T H,SHIRAI K.PhraseRNN:phrase recursive neural network for aspect-based sentiment analysis[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,USA:ACL Press,2015:2509-2514.
[15]DONG L,WEI F,TAN C,et al.Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.Stroudsburg,USA:ACL Press,2014:49-54.
[16]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[EB/OL].[2017-11-15].https://arxiv.org/abs/1409.0473.
[17]YIN W,SCHTZE H,XIANG B,et al.ABCNN:attention-based convolutional neural network for modeling sentence pairs[J].Transactions of the Association for Computational Linguistics,2016,4(11):259-272.
[18]WANG Y,HUANG M,ZHAO L,et al.Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,USA:ACL Press,2016:606-615.
[19]COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing(almost) from scratch[J].Journal of Machine Learning Research,2011,12:2493-2537.
[20]PENNINGTON J,SOCHER R,MANNING C D.GloVe:Global Vectors for Word Representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,USA:ACL Press,2014:1532-1543.
[21]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2017-11-15].https://arxiv.org/abs/1301.3781.
[22]WANG X,LIU Y,SUN C,et al.Predicting polarities of tweets by composing word embeddings with long short-term memory[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Stroudsburg,USA:ACL Press,2015:1343-1353. |