[1]朱国策.基于深度卷积神经网络的医学图像肺结节检测方法研究[D].无锡:江南大学,2017.
[2]周兵.CT影像中肺结节检测与识别方法的研究[D].成都:电子科技大学,2017.
[3]胡伟俭,陈为,冯浩哲,等.应用于平扫CT图像肺结节检测的深度学习方法综述[J].浙江大学学报(理学版),2017,44(4):379-384.
[4]KOSTIS W J,REEVES A P,YANKELEVITZ D F,et al.Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images[J].IEEE Transactions on Medical Imaging,2013,22(10):1259-1274.
[5]GAO T,GONG J,WANG Y,et al.Three dimensional adaptive template matching algorithm for lung nodule detection[J].Journal of Image and Graphics,2014,19(9):1384-1391.
[6]LIN D,YAN C R,CHEN W T.Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system[J].Computerized Medical Imaging and Graphics,2005,29(6):447-458.
[7]HONG H,JIN M G.Automatic segmentation of ground-glass opacity nodule on chest CT images by histogram modeling and local contrast[C]//Proceedings of Radiological Society of North America 2012 Scientific Assembly and Annual Meeting.Berlin,Germany:Springer,2012:99-107.
[8]CHEN G H.Solving sobole active contour models via level set[C]//Proceedings of 2014 International Conference on Advanced Control,Automation and Robotics.New York,USA:ACM Press,2014:8-12.
[9]PAIK D S,BEAULIEU C F,RUBIN G D,et al.Surface normal overlap:a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT[J].IEEE Transactions on Medical Imaging,2004,23(6):661-667.
[10]KATSUMATA Y,ITAI Y S M.Automatic detection of GGO candidate regions employing four statistical features on thoracic MDCT image[C]//Proceedings of International Conference on Control,Automatic and System.New York,USA:ACM Press,2007:10-20.
[11]CHEN S,SUZUKI K,MACMAHON H.Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification[J].Medical Physics,2011,38(4):1844-1858.
[12]CAMPADELLI P,CASIRAGHI E,ARTIOLI D.A fully automated method for lung nodule detection from postero-anterior chest radiographs[J].IEEE Transactions on Medical Imaging,2006,25(12):1588-1603.
[13]SNOEREN P R,LITJENS G J S,GINNEKEN B V,et al.Training a computer aided detection system with simulated lung nodules in chest radiographs[C]//Proceedings of the 3rd International Workshop on Pulmonary Image Analysis.New York,USA:ACM Press,2016,139-142.
[14]孟以爽,易平,顾问,等.基于深度学习的肺结节检测[J].计算机时代,2018(2):5-9.
[15]赵鹏飞,赵涓涓,强彦,等.多输入卷积神经网络肺结节检测方法研究[J].计算机科学,2018,45(1):162-166.
[16]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmenta-tion[EB/OL].[2018-04-18].https://arxiv.org/abs/1505.04597v1.
[17]GAO H,ZHUANG L.Densely connected convolutional networks[EB/OL].[2018-04-18].https://arxiv.org/abs/1608.06993
[18]陈鸿翔.基于卷积神经网络的图像语义分割[D].杭州:浙江大学,2016.
[19]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Computer Society,2015:3431-3440.
[20]芮杰.多源遥感数据测绘应用关键技术研究[D].北京:中国科学院大学,2017.
[21]QIN P,LI C,CHEN J,et al.Research on improved algorithm of object detection based on feature pyramid[J].Multimedia Tools and Applications,2019,78(1):913-927.
[22]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[EB/OL].[2018-04-18].https://arxiv.org/abs/1612.03144v2.
[23]LIN G H,LUO S W,HUANG Y P,et al.A novel regularization method based on convolution neural network[J].Journal of Computer Research and Development,2014,51(9):1891-1900.
[24]DICE L R.Measures of the amount of ecologic association between species[J].Ecology,1945,26(3):297-302.
[25]刘宝生,闫莉萍,周东华.几种相似性测度的比较[J].计算机应用研究,2006,23(11):1-3.
[26]周清华,范亚光,王颖,等.中国肺部结节分类、诊断与治疗指南[J].中国肺癌杂志,2016,19(12):793-798. |