[1] LIU Jian,SU Purui,YANG Min,et al.Software and cyber security-a survey[J].Journal of Software,2018,29(1):42-68.(in Chinese)刘剑,苏璞睿,杨珉,等.软件与网络安全研究综述[J].软件学报,2018,29(1):42-68. [2] YU Zhuliang.Review of progress on artificial intelligence[J].Journal of Nanjing University of Information Science and Technology,2017,9(3):297-304.(in Chinese)俞祝良.人工智能技术发展概述[J].南京信息工程大学学报(自然科学版),2017,9(3):297-304. [3] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [4] SONG Chaochen,HUANG Junqiang,Wang Dameng,et al.A survey on detecting techniques of computer security vulnerability[J].Netinfo Security,2012(1):77-79.(in Chinese)宋超臣,黄俊强,王大萌,等.计算机安全漏洞检测技术综述[J].信息网络安全,2012(1):77-79. [5] ZOU Quanchen,ZHANG Tao,WU Runpu,et al.From automation to intelligence:progress in software vulnerability mining technology[J].Journal of Tsinghua University (Natural Science Edition),2018,58(12):1079-1094.(in Chinese)邹权臣,张涛,吴润浦,等.从自动化到智能化:软件漏洞挖掘技术进展[J].清华大学学报(自然科学版),2018,58(12):1079-1094. [6] Flawfinder[EB/OL].[2018-11-02].https://dwheeler.com/flawfinder/. [7] Coverity[EB/OL].[2018-11-02].https://scan.coverity.com/. [8] Checkmarx[EB/OL].[2018-11-02].https://www.checkmarx.com/. [9] GRIECO G,GRINBLAT G L,UZAL L,et al.Toward large-scale vulnerability discovery using machine learning[C]//Proceedings of ACM Conference on Data and Application Security and Privacy.New York,USA:ACM Press,2016:85-96. [10] LIN Guanjun,ZHANG Jun,LUO Wei,et al.POSTER:vulnerability discovery with function representation learning from unlabeled projects[C]//Proceedings of ACM SIGSAC Conference.New York,USA:ACM Press,2017:2539-2541. [11] XU Xiaojun,LIU Chang,FENG Qian,et al.Neural network-based graph embedding for cross-platform binary code similarity detection[C]//Proceedings of 2017 ACM SIGSAC Conference on Computer and Communications Security.New York,USA:ACM Press,2017:363-376. [12] LI Zhen,ZOU Deqing,XU Shouhuai,et al.VulDeePecker:a deep learning-based system for vulnerability detection[EB/OL].[2018-11-02].https://arxiv.org/pdf/1801.01681.pdf. [13] ZHANG Yanmei.Research on testing technology of object-oriented programs based on dependency analysis[D].Xuzhou:China University of Mining and Technology,2012.(in Chinese)张艳梅.基于依赖性分析的面向对象程序测试技术研究[D].徐州:中国矿业大学,2012. [14] Gensim[EB/OL].[2018-11-02].https://radimrehurek.com/gensim/. [15] MIKOLOV T,CHEN Kai,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2018-11-02].https://arxiv.org/abs/1301.3781. [16] GRAVES A,JAITLY N,MOHAMED A R.Hybrid speech recognition with deep bidirectional LSTM[C]//Proceedings of 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.Washington D.C.,USA:IEEE Press,2014:273-278. [17] HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].[2018-11-02].https://arxiv.org/pdf/1207.0580.pdf. [18] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2018-11-02].https://arxiv.org/pdf/1502.03167.pdf. [19] KINGMA D P,BA J.Adam:a method for stochastic optimization[EB/OL].[2018-11-02].https://arxiv.org/pdf/1412.6980.pdf. [20] SARD manual[EB/OL].[2018-11-02].https://samate.nist.gov/index.php/SARD.html. |