[1] VON A L,BLUM M,HOPPER N J,et al.CAPTCHA:using hard AI problems for security[C]//Proceedings of International Conference on Theory and Applications of Cryptographic Techniques.Berlin,Germany:Springer,2003:294-311. [2] ZHANG Zheng,WANG Shunfan,DONG Lei.CAPTCHA recognition based on deep learning[J].Journal of Hubei University of Technology,2018,33(2):5-8,25.(in Chinese)张铮,王顺帆,董雷.基于深度学习的验证码识别[J].湖北工业大学学报,2018,33(2):5-8,25. [3] CHEN Jun,LUO Xiangyang,LIU Yingying,et al.Selective learning confusion class for text-based CAPTCHA recognition[J].IEEE Access,2019,7:22246-22259. [4] MA Wentao,QIN Jiaohu,XIANG Xuyu,et al.Adaptive median filtering algorithm based on divide and conquer and its application in CAPTCHA recognition[J].Computers,Materials and Continua,2019,58(3):665-677. [5] ARAIN R H,SHAIKH R A,MAITLO A,et al.A deep learning model for recognition of complex text-based CAPTCHA[J].International Journal of Computer Science and Network Security,2018,18(2):103-107. [6] QIN Bo,GU Naijie,ZHANG Xiaoci,et al.Image CAPTCHA recognition based on convolutional neural network[J].Computer Systems & Applications,2018,27(11):144-150.(in Chinese)秦波,顾乃杰,张孝慈,等.基于卷积神经网络的图像验证码识别[J].计算机系统应用,2018,27(11):144-150. [7] ROBERTSON S,PENN G,WANG Y.Exploring spectro-temporal features in end-to-end convolutional neural networks[EB/OL].[2019-05-10].https://arxiv.org/abs/1901.00072?context=cs.LG. [8] LI Wenxiang.Modeling and verification of a temperature control system based on temporal Petri nets[J].Journal of Shandong University of Technology(Natural Science Edition),2018,32(6):24-28.(in Chinese)李文翔.温控系统的时序Petri网建模与验证[J].山东理工大学学报(自然科学版),2018,32(6):24-28. [9] VAN D A W,WEIJTERS T,MARUSTER L.Workflow mining:discovering process models from event logs[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(9):1128-1142. [10] SMIRNOV S,WEIDLICH M,MENDLING J.Business process model abstraction based on behavioral profiles[C]//Proceedings of International Conference on Service-Oriented Computing.Berlin,Germany:Springer,2010:1-16. [11] SOBOCINSKI P,STEPHENS O.Penrose:putting compositionality to work for petri net reachability[C]//Proceedings of International Conference on Algebra and Coalgebra in Computer Science.Berlin,Germany:Springer,2013:346-352. [12] ZHAO Yang,LI Tong,LIU Qing.A performance analysis method for software process modeling based on the extended Petri net[J].Computer Engineering and Applications,2004,40(26):70-72.(in Chinese)赵杨,李彤,柳青.一种基于扩展Petri网的软件过程模型性能分析方法[J].计算机工程与应用,2004,40(26):70-72. [13] TAX N,SIDOROVA N.Discovering more precise process models from event logs by filtering out chaotic activities[J].Journal of Intelligent Information Systems,2019,52(1):107-139. [14] XU Yuyin.Discussion on Petri net activity determination method[D].Jinan:Shandong University of Science and Technology,2006.(in Chinese)徐誉尹.Petri网活性判定方法的探讨[D].济南:山东科技大学,2006. [15] ZHANG Jianping.Application of Petri net dynamic workflow in OA system of mining company[J].China's Manganese Industry,2019,37(2):107-110.(in Chinese)张建平.Petri网动态工作流在矿业公司OA系统中的应用[J].中国锰业,2019,37(2):107-110. [16] REISIG W.Petri nets:an introduction[M].Berlin,Germany:Springer,2012. [17] MARSAN M A,BALBO G,CONTE G,et al.Modelling with generalized stochastic Petri nets[M].[S.1.]:John Wiley & Sons,Inc.,1994. [18] GUERAR M,MERLO A,MIGLIARDI M.Completely automated public physical test to tell computers and humans apart:a usability study on mobile devices[J].Future Generation Computer Systems,2018,82:617-630. [19] GOTO M,SHIRATO T,UDA R.Text-based CAPTCHA using phonemic restoration effect and similar sounds[C]//Proceedings of the 38th IEEE International Computer Software and Applications Conference Workshops.Washington D.C.,USA:IEEE Press,2014:270-275. [20] HUANG G,LIU Z,VAN D M L,et al.Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:4700-4708. [21] PLEISS G,CHEN D,HUANG G,et al.Memory-efficient implementation of densenets[EB/OL].[2019-05-10].https://www.researchgate.net/publication. [22] HE Kaiming,SUN Jian.Convolutional neural networks at constrained time cost[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:5353-5360. |