[1] FOWLER M.Refactoring:improving the design of existing code[M]//DON W,LAURIE W.Extreme programming and agile methods—XP/agile universe 2002.Berlin,Germany:Springer,2002. [2] ARCELLI FONTANA F,BRAIONE P,ZANONI M.Automatic detection of bad smells in code:an experimental assessment[J].The Journal of Object Technology,2012,11(2):1-38. [3] FOKAEFS M,TSANTALIS N,CHATZIGEORGIOU A.JDeodorant:identification and removal of Feature envy bad smells[C]//Proceedings of 2007 IEEE International Conference on Software Maintenance.Washington D.C.,USA:IEEE Press,2007:519-520. [4] JIANG Dexun,MA Peijun,SU Xiaohong,et al.Related work analysis of code bad smell detection and refactoring[J].Intelligent Computer and Applications,2014,4(3):23-27.(in Chinese) 姜德迅,马培军,苏小红,等.代码坏味检测及重构的现状分析[J].智能计算机与应用,2014,4(3):23-27. [5] ZHANG M,HALL T,BADDOO N.Code bad smells:a review of current knowledge[J].Journal of Software Maintenance and Evolution:Research and Practice,2011,23(3):179-202. [6] AL DALLAL J.Identifying refactoring opportunities in object-oriented code:a systematic literature review[J].Information and Software Technology,2015,58:231-249. [7] DI NUCCI D,PALOMBA F,TAMBURRI D A,et al.Detecting code smells using machine learning techniques:are we there yet?[C]//Proceedings of 2018 IEEE International Conference on Software Analysis,Evolution and Reengineering.Washington D.C.,USA:IEEE Press,2018:612-621. [8] MÄNTYLÄ M V,LASSENIUS C.Subjective evaluation of software evolvability using code smells:an empirical study[J].Empirical Software Engineering,2007,11(3):395-431. [9] MOHA N,GUEHENEUC Y G,DUCHIEN L,et al.DECOR:a method for the specification and detection of code and design smells[J].IEEE Transactions on Software Engineering,2010,36(1):20-36. [10] ZHANG Xiaofang,ZHU Can.Empirical study of code smell impact on software evolution[J].Journal of Software,2019,30(5):1422-1437.(in Chinese) 章晓芳,朱灿.代码坏味对软件演化影响的实证研究[J].软件学报,2019,30(5):1422-1437. [11] PALOMBA F,PANICHELLA A,DE LUCIAA,et al.A textual-based technique for smell detection[C]//Proceedings of 2016 IEEE International Conference on Program Comprehension.Washington D.C.,USA:IEEE Press,2016:1-10. [12] FONTANA F A,ZANONI M,MARINO A,et al.Code smell detection:towards a machine learning-based approach[C]//Proceedings of 2013 IEEE International Conference on Software Maintenance.Washington D.C.,USA:IEEE Press,2013:159-168. [13] KREIMER J.Adaptive detection of design flaws[J].Electronic Notes in Theoretical Computer Science,2005,141(4):117-136. [14] KHOMH F,VAUCHER S,GUÉHÉNEUC Y G,et al.BDTEX:a GQM-based Bayesian approach for the detection of antipatterns[J].Journal of Systems and Software,2011,84(4):559-572. [15] MAIGA A,ALI N,BHATTACHARYA N,et al.SMURF:a SVM-based incremental anti-pattern detection approach[C]//Proceedings of 2012 Working Conference on Reverse Engineering.Washington D.C.,USA:IEEE Press,2012:466-475. [16] YANG J C,HOTTA K,HIGO Y,et al.Filtering clones for individual user based on machine learning analysis[C]//Proceedings of 2012 International Workshop on Software Clones.Washington D.C.,USA:IEEE Press,2012:455-469. [17] PALOMBA F,BAVOTA G,PENTA M D,et al.On the diffuseness and the impact on maintainability of code smells:a large scale empirical investigation[J].Empirical Software Engineering,2018,23(3):1188-1221. [18] LIU Liqian,DONG Dong.Long method detection based on cost-sensitive integrated classifier[J].Computer Science,2018,45(11A):497-500.(in Chinese)刘丽倩,董东.基于代价敏感集成分类器的长方法检测[J].计算机科学,2018,45(11A):497-500. [19] BU Yifan,LIU Hui,LI Guangjie.A God class detection method based on deep learning[J].Journal of Software,2019,30(5):161-176.(in Chinese)卜依凡,刘辉,李光杰.一种基于深度学习的上帝类检测方法[J].软件学报,2019,30(5):161-176. [20] YI J Q,KUROGI S,MATSUOKA K.Back-propagation learning of neural networks for translation invariant pattern recognition[J].Systems and Computers in Japan,1991,22(14):80-89. [21] AHSAN M R,IBRAHIMY M I,KHALIFA O O.Neural network classifier for hand motion detection from EMG signal[M].Berlin,Germany:Springer,2011. [22] WANG Yi,FENG Xiaonian,QIAN Tieyun,et al.CNN and LSTM deep network based intrusion detection for malicious users[J].Journal of Frontiers of Computer Science and Technology,2018,12(4):575-585.(in Chinese)王毅,冯小年,钱铁云,等.基于CNN和LSTM深度网络的伪装用户入侵检测[J].计算机科学与探索,2018,12(4):575-585. |