[1] MACHKJDIK J, HANBURY A.Affective image classification using features inspired by psychology and art theory[C]//Proceedings of the 18th ACM International Conference on Multimedia.New York, USA:ACM Press, 2010:83-92. [2] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-10-14].https://arxiv.xilesou.top/pdf/1409.1556.pdf. [3] 高玮军, 杨杰, 张春霞, 等.基于AT-DPCNN模型的情感分析研究[J].计算机工程, 2020, 46(11):53-60. GAO W J, YANG J, ZHANG C X, et al.Sentiment analysis research based on AT-DPCNN model[J].Computer Engineering, 2020, 46(11):53-60.(in Chinese) [4] YOU Q, LUO J, JIN H, et al.Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.Austin, Texas:AAAI Press, 2015:381-388. [5] YANULEVSKAYA V, VAN GEMERT J C, ROTH K, et al.Emotional valence categorization using holistic image features[C]//Proceedings of International Conference on Image Processing.Piscataway, USA:IEEE Press, 2008:101-104. [6] SIERSDORFER S, MINACK E, DENG F, et al.Analyzing and predicting sentiment of images on the social Web[C]//Proceedings of the 18th ACM International Conference on Multimedia.New York, USA:ACM Press, 2010:715-718. [7] ZHAO S, GAO Y, JIANG X, et al.Exploring principles-of-art features for image emotion recognition[C]//Proceedings of the 22nd ACM International Conference on Multimedia.New York, USA:ACM Press, 2014:47-56. [8] CHEN T, YU F X, CHEN J, et al.Object-based visual sentiment concept analysis and application[C]//Proceedings of the 22nd ACM International Conference on Multimedia.New York, USA:ACM Press, 2014:367-376. [9] YUAN J, MCDONOUGH S, YOU Q, et al.Sentribute:image sentiment analysis from a mid-level perspective[C]//Proceedings of the 2nd International Workshop on Issues of Sentiment Discovery and Opinion Mining.New York, USA:ACM Press, 2013:1-10. [10] BORTH D, JI R, CHEN T, et al.Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]//Proceedings of the 21st ACM International Conference on Multimedia.New York, USA:ACM Press, 2013:223-232. [11] CHEN T, BORTH D, DARRELL T, et al.Deepsentibank:visual sentiment concept classification with deep convolutional neural networks[EB/OL].[2020-04-10].https://arxiv.xilesou.top/pdf/1410.8586.pdf. [12] PENG K C, CHEN T, SAGOVNIK A, et al.A mixed bag of emotions:model, predict, and transfer emotion distributions[C]//Proceedings of IEEE CVPRʼ15.Piscataway, USA:IEEE Press, 2015:860-868. [13] YOU Q Z, LUO J B, JIN H L, et al.Building a large scale dataset for image emotion recognition:the fine print and the benchmark[C]//Proceedings of Thirtieth AAAI Conference on Artificial Intelligence.Phoenix, Arizona:AAAI Press, 2016:308-314. [14] 曹建芳, 陈俊杰, 李海芳.基于Adaboost-BP神经网络的图像情感分类方法研究[J].山西大学学报(自然科学版), 2013, 36(3):331-337. CAO J F, CHEN J J, LI H F.Research on image sentiment classification based on adabost-BP neural network[J].Journal of Shanxi University(Natural Science Edition), 2013, 36(3):331-337.(in Chinese) [15] YANGJ, SHE D, SUN M, et al.Visual sentiment prediction based on automatic discovery of affective regions[J].IEEE Transactions on Multimedia, 2018, 20(9):2513-2525. [16] 蔡国永, 吕光瑞, 徐智.基于层次化深度关联融合网络的社交媒体情感分类[J].计算机研究与发展, 2019, 56(6):1312-1324. CAI G Y, LV G R, XU Z.A hierarchical deep correlative fusion network for sentiment classification in social media[J].Journal of Computer Research and Development, 2019, 56(6):1312-1324.(in Chinese) [17] 王伟凝, 李乐敏, 黄杰雄, 等.基于多层次深度卷积神经网络的图像情感分类[J].华南理工大学学报(自然科学版), 2019, 47(6):39-50. WANG W N, LI L M, HUANG J X, et al.Image emotion classification based on multi-level deep convolution neural network[J].Journal of South China University of Technology(Natural Science Edition), 2019, 47(6):39-50.(in Chinese) [18] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE CVPRʼ18.Piscataway, USA:IEEE Press, 2018:7132-7141. [19] CHEN L, ZHANG H, XIAO J, et al.SCA-CNN:spatial and channel-wise attention in convolutional networks for image captioning[C]//Proceedings of IEEE CVPRʼ17.Piscataway, USA:IEEE Press, 2017:5659-5667. [20] YOU Q, JIN H, LUO J.Visual sentiment analysis by attending on local image regions[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.San Francisco, USA:AAAI Press, 2017:231-237. [21] SONG K, YAO T, LING Q, et al.Boosting image sentiment analysis with visual attention[J].Neurocomputing, 2018, 312:218-228. [22] ZEILER M D, FERGUS R.Visualizing and understanding convolutional networks[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:818-833. [23] PENG K C, SADOVNIK A, GALLAGHER A, et al.Where do emotions come from? predicting the emotion stimuli map[C]//Proceedings of IEEE ICIPʼ16.Piscataway, USA:IEEE Press, 2016:614-618. [24] CAI G, HE X, PAN J.Visual sentiment analysis with local object regions attention[C]//Proceedings of International Conference on Pioneering Computer Scientists, Engineers and Educators.Singapore:[s.n.], 2019:479-489. |