[1] 张顺,龚怡宏,王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J].计算机学报,2019,42(3):453-482. ZHANG S,GONG Y H,WANG J J.The development of deep convolution neural network and its application of computer vision[J].Chinese Journal of Computers,2019,42(3):453-482.(in Chinese) [2] HU Y,SUN S,LI J,et al.A novel channel pruning method for deep neural network compression[EB/OL].[2020-09-15].http://export.arxiv.org/pdf/1805.11394. [3] 靳丽蕾,杨文柱,王思乐,等.一种用于卷积神经网络压缩的混合剪枝方法[J].小型微型计算机系统,2018,39(12):2596-2601. JIN L L,YANG W Z,WANG S L,et al.Mixed pruning method for convolutional neural network compression[J].Journal of Chinese Mini-Micro Computer Systems,2018,39(12):2596-2601.(in Chinese) [4] IANDOLA F,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL].[2020-09-20].https://arxiv.org/abs/1602.07360v1. [5] ZHANG X,ZHOU X,LIN M,et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:6848-6856. [6] MEHTA S,RASTEGARI M,CASPI A,et al.ESPNet:efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:552-568. [7] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. [8] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [9] HUANG G,LIU Z,MAATEN L V D,et al.Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2261-2269. [10] ZHANG Z,WANG X,JUNG C.DCSR:dilated convolutions for single image super-resolution[J].IEEE Transactions on Image Processing,2019,28(4):1625-1635. [11] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:2818-2826. [12] ARORA S,BHASKARA A,GE R,et al.Provable bounds for learning some deep representations[EB/OL].[2020-09-21].https://arxiv.org/abs/1310.6343v1. [13] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-09-18].https://arxiv.org/abs/1409.1556. [14] LIN M,CHEN Q,YAN S,et al.Network in network[EB/OL].[2020-09-22].https://arxiv.org/abs/1312.4400. [15] 高云龙,吴川,朱明.基于改进卷积神经网络的短文本分类模型[J].吉林大学学报(理学版),2020,58(4):923-930. GAO Y L,WU C,ZHU M.Short text classification model based on improved convolutional neural network[J].Journal of Jilin University(Science Edition),2020,58(4):923-930.(in Chinese) [16] ROY A G,NAVAB N,WACHINGER C.Recalibrating fully convolutional networks with spatial and channel "squeeze and excitation" blocks[J].IEEE Transactions on Medical Imaging,2019,38(2):540-549. [17] LI Y,WANG N,SHI J,et al.Adaptive batch normalization for practical domain adaptation[J].Pattern Recognition,2018,80(4):109-117. [18] ABADI M,BARHAM P,CHEN J,et al.TensorFlow:a system for large-scale machine learning[C]//Proceedings of Symposium on Operating Systems Design and Implementation.New York,USA:ACM Press,2016:265-283. [19] LEE C,XIE S,GALLAGHER P W,et al.Deeply-supervised nets[C]//Proceedings of International Conference on Artificial Intelligence and Statistics.New York,USA:ACM Press,2015:562-570. [20] 杨萌林,张文生.分类激活图增强的图像分类算法[J].计算机科学与探索,2020,14(1):149-158. YANG M L,ZHANG W S.Image classification algorithm based on classification activation map enhancement[J].Journal of Frontiers of Computer Science and Technology,2020,14(1):149-158.(in Chinese) [21] ZAGORUYKO S,KOMODAKIS N.Wide residual networks[EB/OL].[2020-09-20].https://arxiv.org/abs/1605.07146v4. [22] LARSSON G,MAIRE M,SHAKHNAROVICH G,et al.FractalNet:ultra-deep neural networks without residuals[EB/OL].[2020-09-21].https://arxiv.org/abs/1605.07648v1. [23] WU Y.Deep convolutional neural network based on densely connected squeeze-and-excitation blocks[J].AIP Advances,2019,9(6):1-10. [24] HOU S,LIU X,WANG Z.Dualnet:learn complementary features for image recognition[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:502-510. [25] VELICKOVIC P,WANG D,LANEY N D,et al.X-CNN:cross-modal convolutional neural networks for sparse datasets[C]//Proceedings of IEEE Symposium Series on Computational Intelligence.Washington D.C.,USA:IEEE Press,2016:1-8. [26] KILINC O,UYSAL I.GAR:an efficient and scalable graph-based activity regularization for semi-supervised learning[J].Neurocomputing,2018,296(6):46-54. [27] 付晓,沈远彤,李宏伟,等.基于半监督编码生成对抗网络的图像分类模型[J].自动化学报,2020,46(3):531-539. FU X,SHEN Y T,LI H W,et al.A semi-supervised encoder generative adversarial networks model for image classification[J].Acta Automatica Sinica,2020,46(3):531-539.(in Chinese) |